
GLHMM
Release 0.0.1

Sonsoles Alonso

Mar 25, 2024

CONTENTS:

1 Dependencies 3

2 Installation 5

3 Documentation 7
3.1 Tutorial . 7
3.2 Modules . 10

Python Module Index 77

Index 79

i

ii

GLHMM, Release 0.0.1

logo2_full.png

The GLHMM toolbox provides facilities to fit a variety of Hidden Markov models (HMM) based on the Gaussian
distribution, which we generalise as the Gaussian-Linear HMM. Crucially, the toolbox has a focus on finding associa-
tions at various levels between brain data (EEG, MEG, fMRI, ECoG, etc) and non-brain data, such as behavioural or
physiological variables.

• Official source code repo: https://github.com/vidaurre/glhmm

• GLHMM documentation: https://glhmm.readthedocs.io/en/latest/index.html

CONTENTS: 1

https://glhmm.readthedocs.io/en/latest/?badge=latest
https://github.com/vidaurre/glhmm
https://glhmm.readthedocs.io/en/latest/index.html

GLHMM, Release 0.0.1

2 CONTENTS:

CHAPTER

ONE

DEPENDENCIES

The required dependencies to use glhmm are:

• Python >= 3.6

• NumPy

• numba

• scikit-learn

• scipy

• matplotlib

• seaborn

3

GLHMM, Release 0.0.1

4 Chapter 1. Dependencies

CHAPTER

TWO

INSTALLATION

• To install from the repo, use the following command:

pip install glhmm

5

GLHMM, Release 0.0.1

6 Chapter 2. Installation

CHAPTER

THREE

DOCUMENTATION

Warning The documentation of this library is under development

3.1 Tutorial

GLHMM is a Python toolbox with a focus on neuroscience applications but broadly applicable to other domains as
well. It implements a generalisation of various types of Hidden Markov Model (HMM). The toolbox can be applied on
multiple data modalities, including fMRI, EEG, MEG, and ECoG, and offers a comprehensive set of HMMs tailored
for different data types and analysis goals. The most important configurable aspect is the state distribution, which is
parameterized using a regression model. A non-exhaustive list of possible state distributions are:

• Gaussian: used in fMRI and other neuroimaging modalities.

• Wishart: employed in fMRI to specifically focus on changes in connectivity (covariance).

• Time-delay embedded: applied to whole-brain electrophysiological data (MEG or EEG), to capture spectral
modulations in the data.

• Autoregressive: provides a more detailed spectral description for electrophysiological data with a limited
number of channels.

• Regression-based decoding: describes the dynamic relationship between brain activity and ongoing stimuli.

• Regression-based encoding: emphasizes the spatial interpretation of brain activity in relation to stimuli.

3.1.1 Installation

If you have not done so, install the repo using:

[1]: pip install glhmm

Requirement already satisfied: glhmm in /home/docs/checkouts/readthedocs.org/user_builds/
→˓glhmm2/envs/latest/lib/python3.10/site-packages (0.2.3)
Requirement already satisfied: scipy in /home/docs/checkouts/readthedocs.org/user_builds/
→˓glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (1.12.0)
Requirement already satisfied: numpy in /home/docs/checkouts/readthedocs.org/user_builds/
→˓glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (1.26.4)
Requirement already satisfied: scikit-learn in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (1.4.1.post1)
Requirement already satisfied: matplotlib in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (3.8.3)
Requirement already satisfied: numba in /home/docs/checkouts/readthedocs.org/user_builds/

(continues on next page)

7

../glossary.html#hmm

GLHMM, Release 0.0.1

(continued from previous page)

→˓glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (0.59.1)
Requirement already satisfied: seaborn in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (0.13.2)
Requirement already satisfied: pandas in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (2.2.1)
Requirement already satisfied: igraph in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (0.11.4)
Requirement already satisfied: tqdm in /home/docs/checkouts/readthedocs.org/user_builds/
→˓glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (4.66.2)
Requirement already satisfied: scikit-image in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (0.22.0)
Requirement already satisfied: statsmodels in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (0.14.1)

Requirement already satisfied: texttable>=1.6.2 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from igraph->glhmm) (1.7.
→˓0)
Requirement already satisfied: contourpy>=1.0.1 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm)␣
→˓(1.2.0)
Requirement already satisfied: cycler>=0.10 in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm) (0.12.
→˓1)
Requirement already satisfied: fonttools>=4.22.0 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm)␣
→˓(4.50.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm)␣
→˓(1.4.5)
Requirement already satisfied: packaging>=20.0 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm)␣
→˓(24.0)
Requirement already satisfied: pillow>=8 in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm) (10.2.
→˓0)
Requirement already satisfied: pyparsing>=2.3.1 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm)␣
→˓(3.1.2)
Requirement already satisfied: python-dateutil>=2.7 in /home/docs/checkouts/readthedocs.
→˓org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->
→˓glhmm) (2.9.0.post0)
Requirement already satisfied: llvmlite<0.43,>=0.42.0dev0 in /home/docs/checkouts/
→˓readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from␣
→˓numba->glhmm) (0.42.0)

Requirement already satisfied: pytz>=2020.1 in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from pandas->glhmm) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from pandas->glhmm) (2024.
→˓1)

Requirement already satisfied: networkx>=2.8 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-image->glhmm)␣

(continues on next page)

8 Chapter 3. Documentation

GLHMM, Release 0.0.1

(continued from previous page)

→˓(3.2.1)
Requirement already satisfied: imageio>=2.27 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-image->glhmm)␣
→˓(2.34.0)
Requirement already satisfied: tifffile>=2022.8.12 in /home/docs/checkouts/readthedocs.
→˓org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-image->
→˓glhmm) (2024.2.12)
Requirement already satisfied: lazy_loader>=0.3 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-image->glhmm)␣
→˓(0.3)

Requirement already satisfied: joblib>=1.2.0 in /home/docs/checkouts/readthedocs.org/
→˓user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-learn->glhmm)␣
→˓(1.3.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in /home/docs/checkouts/readthedocs.
→˓org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-learn->
→˓glhmm) (3.4.0)

Requirement already satisfied: patsy>=0.5.4 in /home/docs/checkouts/readthedocs.org/user_
→˓builds/glhmm2/envs/latest/lib/python3.10/site-packages (from statsmodels->glhmm) (0.5.
→˓6)

Requirement already satisfied: six in /home/docs/checkouts/readthedocs.org/user_builds/
→˓glhmm2/envs/latest/lib/python3.10/site-packages (from patsy>=0.5.4->statsmodels->
→˓glhmm) (1.16.0)

Note: you may need to restart the kernel to use updated packages.

3.1.2 Examples

Example data is provided in the example_data folder.

For an example of running a standard HMM using only one set of time series, see Example standard Gaussian HMM.

For an example of running a GLHMM using two sets of time series, see Example GLHMM.

3.1.3 Relations to behaviour

After estimating an HMM, we can explore its connections with an external variable not initially considered in the model.
This could involve tasks like predicting age from subject-specific HMMs based on neuroimaging data or examining
correlations with physiological factors. Our toolbox supports these types of analyses in the module called Prediction
and Statistics

Prediction

This module enables the utilization of individual brain activity patterns for various applications, including predictions
(such as cognitive abilities) and classifications (of subjects or clinical groups, for example). For a tutorial, see here

3.1. Tutorial 9

../../glhmm/prediction.py
../../glhmm/statistics.py

GLHMM, Release 0.0.1

Statistics

This module provides powerful permutation testing analysis, which allows for statistical significance assessment with-
out data distribution assumptions. It supports various test types, such as between- and within-session/subject tests.
Users can choose between permutation testing with regression or correlation for a wide range of research questions.
For a tutorial demonstrating the application of testing see here

These are examples of permutation tests: - Testing across subjects . - Testing across sessions . - Testing across trials .
- Testing across visits .

3.2 Modules

3.2.1 glhmm.glhmm

Gaussian Linear Hidden Markov Model @author: Diego Vidaurre 2023

class glhmm.glhmm.glhmm(K=10, covtype='shareddiag', model_mean='state', model_beta='state',
dirichlet_diag=10, connectivity=None, Pstructure=None, Pistructure=None)

Bases: object

Gaussian Linear Hidden Markov Model class to decode stimulus from data.

Attributes:

K
[int, default=10] number of states in the model.

covtype
[str, {‘shareddiag’, ‘diag’,’sharedfull’,’full’}, default ‘shareddiag’] Type of covariance matrix. Choose
‘shareddiag’ to have one diagonal covariance matrix for all states, or ‘diag’ to have a diagonal full co-
variance matrix for each state, or ‘sharedfull’ to have a shared full covariance matrix for all states, or ‘full’
to have a full covariance matrix for each state.

model_mean
[str, {‘state’, ‘shared’, ‘no’}, default ‘state’] Model for the mean. If ‘state’, the mean will be modelled state-
dependent. If ‘shared’, the mean will be modelled globally (shared between all states). If ‘no’ the mean of
the timeseries will not be used to drive the states.

model_beta
[str, {‘state’, ‘shared’, ‘no’}, default ‘state’] Model for the beta. If ‘state’, the regression coefficients will be
modelled state-dependent. If ‘shared’, the regression coefficients will be modelled globally (shared between
all states). If ‘no’ the regression coefficients will not be used to drive the states.

dirichlet_diag
[float, default=10] The value of the diagonal of the Dirichlet distribution for the transition probabilities. The
higher the value, the more persistent the states will be. Note that this value is relative; the prior competes
with the data, so if the timeseries is very long, the dirichlet_diag may have little effect unless it is set to a
very large value.

connectivity
[array_like of shape (n_states, n_states), optional] Matrix of binary values defining the connectivity of the
states. This parameter can only be used with a diagonal covariance matrix (i.e., covtype=’diag’).

Pstructure
[array_like, optional] Binary matrix defining the allowed transitions between states. The default is a
(n_states, n_states) matrix of all ones, allowing all possible transitions between states.

10 Chapter 3. Documentation

GLHMM, Release 0.0.1

Pistructure
[array_like, optional] Binary vector defining the allowed initial states. The default is a (n_states,) vector of
all ones, allowing all states to be used as initial states.

Notes:

This class requires the following modules: numpy, math, scipy, sys, warnings, copy, and time.

decode(X, Y , indices=None, files=None, viterbi=False, set=None)
Calculates state time courses for all the data using either parallel or sequential processing.

Parameters:

X
[array-like of shape (n_samples, n_parcels)] The timeseries of set of variables 1.

Y
[array-like of shape (n_samples, n_parcels)] The timeseries of set of variables 2.

indices
[array-like of shape (n_sessions, 2), optional, default=None] The start and end indices of each
trial/session in the input data.

files
[list of str, optional, default=None] List of filenames corresponding to the indices.

viterbi
[bool, optional, default=False] Whether or not the Viterbi algorithm should be used.

set
[int, optional, default=None] Index of the sessions set to decode.

Returns:

If viterbi=True:

vpath
[array of shape (n_samples,)] The most likely state sequence.

If viterbi=False:

Gamma
[array of shape (n_samples, n_states)] The state probability timeseries.

Xi
[array of shape (n_samples - n_sessions, n_states, n_states)] The joint probabilities of past and
future states conditioned on data.

scale
[array-like of shape (n_samples,)] The scaling factors from the inference, used to compute the free
energy. In normal use, we would do

Gamma,Xi,_ = hmm.decode(X,Y,indices)

3.2. Modules 11

GLHMM, Release 0.0.1

Raises:

Exception
If the model has not been trained. If both ‘files’ and ‘Y’ arguments are provided.

dual_estimate(X, Y , indices=None, Gamma=None, Xi=None, for_kernel=False)
Dual estimation of HMM parameters.

Parameters:

X
[array-like of shape (n_samples, n_variables_1)] The timeseries of set of variables 1.

Y
[array-like of shape (n_samples, n_variables_2)] The timeseries of set of variables 2.

indices
[array-like of shape (n_sessions, 2), optional] The start and end indices of each trial/session in the
input data. If None, a single segment spanning the entire sequence is used.

Gamma
[array-like of shape (n_samples, n_states), optional] The state probabilities. If None, it is computed
from the input observations.

Xi
[array-like of shape (n_samples - n_sessions, n_states, n_states), optional] The joint probabilities of
past and future states conditioned on data. If None, it is computed from the input observations.

for_kernel
[bool, optional] Whether purpose of dual estimation is kernel (gradient) computation, or not If True,
function will also return Gamma and Xi (default False)

Returns:

hmm_dual
[object] A copy of the HMM object with updated dynamics and observation distributions.

get_active_K()

Returns the number of active states

Returns:

K_active
[int] Number of active states.

get_beta(k=0)
Returns the regression coefficients (beta) for the specified state.

12 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

k
[int, optional, default=0] The index of the state for which to retrieve the beta value.

Returns:

beta: ndarray of shape (n_variables_1 x n_variables_2)
The regression coefficients of each variable in X on each variable in Y for the specified state.

Raises:

Exception
If the model has not yet been trained. If the model has no beta.

get_betas()

Returns the regression coefficients (beta) for all states.

Returns:

betas: ndarray of shape (n_variables_1 x n_variables_2 x n_states)
The regression coefficients of each variable in X on each variable in Y for all states.

Raises:

Exception
If the model has not yet been trained. If the model has no beta.

get_covariance_matrix(k=0)
Returns the covariance matrix for the specified state.

Parameters:

k
[int, optional] The index of the state. Default=0.

Returns:

array of shape (n_parcels, n_parcels)
The covariance matrix for the specified state.

3.2. Modules 13

GLHMM, Release 0.0.1

Raises:

Exception
If the model has not been trained.

get_fe(X, Y , Gamma, Xi, scale=None, indices=None, todo=None, non_informative_prior_P=False)
Computes the Free Energy of an HMM depending on observation model.

Parameters:

X
[array of shape (n_samples, n_parcels)] The timeseries of set of variables 1.

Y
[array of shape (n_samples, n_parcels)] The timeseries of set of variables 2.

Gamma
[array of shape (n_samples, n_states), default=None] The state timeseries probabilities.

Xi
[array-like of shape (n_samples - n_sessions, n_states, n_states)] The joint probabilities of past and
future states conditioned on data.

scale
[array-like of shape (n_samples,), default=None] The scaling factors used to compute the free energy
of the dataset. If None, scaling is automatically computed.

indices
[array-like of shape (n_sessions, 2), optional, default=None] The start and end indices of each
trial/session in the input data.

todo: bool of shape (n_terms,) or None, default=None
Whether or not each of the 5 elements (see fe_terms) should be computed. Only for internal use.

non_informative_prior_P: array-like of shape (n_states, n_states), optional, default=False
Prior of transition probability matrix Only for internal use.

Returns:

fe_terms
[array of shape (n_terms,)] The variational free energy, separated into different terms: - element 1:
Gamma Entropy - element 2: Data negative log-likelihood - element 3: Gamma negative log-likelihood
- element 4: KL divergence for initial and transition probabilities - element 5: KL divergence for the
state parameters

14 Chapter 3. Documentation

GLHMM, Release 0.0.1

Raises:

Exception
If the model has not been trained.

Notes:

This function computes the variational free energy using a specific algorithm. For more information on the
algorithm, see [^1].

References:

[^1] Smith, J. et al. “A variational approach to Bayesian learning of switching dynamics in dynamical
systems.” Journal of Machine Learning Research, vol. 18, no. 4, 2017.

get_inverse_covariance_matrix(k=0)
Returns the inverse covariance matrix for the specified state.

Parameters:

k
[int, optional] The index of the state. Default=0.

Returns:

array of shape (n_parcels, n_parcels)
The inverse covariance matrix for the specified state.

Raises:

Exception
If the model has not been trained.

get_mean(k=0)
Returns the mean for the specified state.

Parameters:

k
[int, optional, default=0] The index of the state for which to retrieve the mean.

3.2. Modules 15

GLHMM, Release 0.0.1

Returns:

mean: ndarray of shape (n_variables_2,)
The mean value of each variable in Y for the specified state.

Raises:

Exception
If the model has not yet been trained. If the model has no mean.

get_means()

Returns the means for all states.

Returns:

means: ndarray of shape (n_variables_2, n_states)
The mean value of each variable in Y for all states.

Raises:

Exception
If the model has not yet been trained. If the model has no mean.

get_r2(X, Y , Gamma, indices=None)
Computes the explained variance per session/trial and per column of Y

Parameters:

X
[array of shape (n_samples, n_variables_1)] The timeseries of set of variables 1.

Y
[array of shape (n_samples, n_variables_2)] The timeseries of set of variables 2.

Gamma
[array of shape (n_samples, n_states), default=None] The state timeseries probabilities.

indices
[array-like of shape (n_sessions, 2), optional, default=None] The start and end indices of each
trial/session in the input data.

16 Chapter 3. Documentation

GLHMM, Release 0.0.1

Returns:

r2
[array of shape (n_sessions, n_variables_2)] The R-squared (proportion of the variance explained) for
each session and each variable in Y.

Raises:

Exception
If the model has not been trained, or if it does not have neither mean or beta

Notes:

This function does not take the covariance matrix into account

loglikelihood(X, Y)
Computes the likelihood of the model per state and time point given the data X and Y.

Parameters:

X
[array-like of shape (n_samples, n_parcels)] The timeseries of set of variables 1.

Y
[array-like of shape (n_samples, n_parcels)] The timeseries of set of variables 2.

Returns:

L
[array of shape (n_samples, n_states)] The likelihood of the model per state and time point given the
data X and Y.

Raises:

Exception
If the model has not been trained.

sample(size, X=None, Gamma=None)
Generates Gamma and Y for timeseries of lengths specified in variable size.

3.2. Modules 17

GLHMM, Release 0.0.1

Parameters:

size
[array of shape (n_sessions,) or (n_sessions, 2)] If size is 1-dimensional, each element represents the
length of a session. If size is 2-dimensional, each row of size represents the start and end indices of a
session in a timeseries.

X
[array of shape (n_samples, n_parcels), default=None] The timeseries of set of variables 1.

Gamma
[array of shape (n_samples, n_states), default=None] The state probability timeseries.

Returns:

Gamma
[array of shape (n_samples, n_states)] The state probability timeseries.

Y: array of shape (n_samples,n_parcels)
The timeseries of set of variables 2.

If X=None:

X
[array of shape (n_samples, n_parcels)] The timeseries of set of variables 1.

sample_Gamma(size)
Generates Gamma, for timeseries of lengths specified in variable size.

Parameters:

size
[array] Array of shape (n_sessions,) or (n_sessions, 2). If size is 1-dimensional, each element repre-
sents the length of a session. If size is 2-dimensional, each row of size represents the start and end
indices of a session in a timeseries.

Returns:

Gamma
[array of shape (n_samples, n_states)] The state probability timeseries.

train(X=None, Y=None, indices=None, files=None, Gamma=None, Xi=None, scale=None, options=None)
Train the GLHMM on input data X and Y, which most general formulation is Y = mu_k + X beta_k + noise
where noise is Gaussian with mean zero and standard deviation Sigma_k

It supports both standard and stochastic variational learning; for the latter, data must be supplied in files
format

18 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

X
[array-like of shape (n_samples, n_variables_1)] The timeseries of set of variables 1.

Y
[array-like of shape (n_samples, n_variables_2)] The timeseries of set of variables 2.

indices
[array-like of shape (n_sessions, 2), optional] The start and end indices of each trial/session in the
input data. If None, one big segment with no cuts is assumed.

files
[str or list of str, optional] The filename(s) containing the data to load. If not None, X, Y, and indices
are ignored.

Gamma
[array-like of shape (n_samples, n_states), optional] The initial values of the state probabilities.

Xi
[array-like of shape (n_samples - n_sessions, n_states, n_states), optional] The joint probabilities of
past and future states conditioned on data.

scale
[array-like of shape (n_samples,), optional] The scaling factors used to compute the free energy of the
dataset. If None, scaling is automatically computed.

options
[dict, optional] A dictionary with options to control the training process.

Returns:

Gamma
[array-like of shape (n_samples, n_states)] The state probabilities. To avoid unnecessary use of mem-
ory, Gamma is only returned if learning is non-stochastic; otherwise it is returned as an empty numpy
array. To get Gamma after stochastic learning, use the decode method.

Xi
[array-like of shape (n_samples - n_sessions, n_states, n_states)] The joint probabilities of past and
future states conditioned on data. To avoid unnecessary use of memory, Xi is only returned if learning
is non-stochastic; otherwise it is returned as an empty numpy array. To get Xi after stochastic learning,
use the decode method.

fe
[array-like] The free energy computed at each iteration of the training process.

Raises:

Exception

If files and Y are both provided or if neither are provided. If X is not provided and the hyper-
parameter ‘model_beta’ is True.

If ‘files’ is not provided and stochastic learning is called upon

3.2. Modules 19

GLHMM, Release 0.0.1

3.2.2 glhmm.io

Input/output functions - Gaussian Linear Hidden Markov Model @author: Diego Vidaurre 2023

glhmm.io.load_files(files, I=None, do_only_indices=False)
Loads data from files and returns the loaded data, indices, and individual indices for each file.

glhmm.io.load_hmm(filename)
Loads a glhmm object from filename

glhmm.io.load_statistics(file_name, load_directory=None)
Load statistics data from a file.

Parameters

• file_name (str) – The name of the file containing the saved statistics data, with or without
extension.

• load_directory (str, optional) – The directory path where the file is located (default
is the current working directory).

Returns
data_dict – The dictionary containing the loaded statistics data.

Return type
dict

Raises

• FileNotFoundError – If the specified file does not exist.

• ValueError – If an unsupported file format is encountered.

glhmm.io.read_flattened_hmm_mat(file)
Reads a MATLAB file containing hidden Markov model (HMM) parameters, and initializes a Gaussian linear
hidden Markov model (GLHMM) using those parameters.

glhmm.io.save_hmm(hmm, filename)
Saves a glhmm object on filename

glhmm.io.save_statistics(data_dict, file_name='statistics', save_directory=None, format='npy')
Save statistics data to a file in the specified directory with optional format (npy or npz).

Parameters

• data_dict (dict) – The dictionary containing statistics data to be saved.

• file_name (str, optional) – The name of the file (default is ‘statistics’).

• save_directory (str, optional) – The directory path where the file will be saved (de-
fault is the current working directory).

• format (str) – The serialization format (‘npy’ or ‘npz’, default is ‘npy’).

Return type
None

20 Chapter 3. Documentation

GLHMM, Release 0.0.1

3.2.3 glhmm.preproc

Preprocessing functions - General/Gaussian Linear Hidden Markov Model @author: Diego Vidaurre 2023

glhmm.preproc.apply_pca(X, d, whitening=False, exact=True)
Applies PCA to the input data X.

Parameters:

X
[array-like of shape (n_samples, n_parcels)] The input data to be transformed.

d
[int or float] If int, the number of components to keep. If float, the percentage of explained variance to
keep. If array-like of shape (n_parcels, n_components), the transformation matrix.

whitening
[bool, default=False] Whether to whiten the transformed data.

exact
[bool, default=True] Whether to use full SVD solver for PCA.

Returns:

X_transformed
[array-like of shape (n_samples, n_components)] The transformed data after applying PCA.

glhmm.preproc.build_data_autoregressive(data, indices, autoregressive_order=1, connectivity=None,
center_data=True)

Builds X and Y for the autoregressive model, as well as an adapted indices array and predefined connectivity
matrix in the right format. X and Y are centered by default.

Parameters:

data
[array-like of shape (n_samples,n_parcels)] The data timeseries.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

autoregressive_order
[int, optional, default=1] The number of lags to include in the autoregressive model.

connectivity
[array-like of shape (n_parcels, n_parcels), optional, default=None] The matrix indicating which regressors
should be used for each variable.

center_data
[bool, optional, default=True] If True, the data will be centered.

3.2. Modules 21

GLHMM, Release 0.0.1

Returns:

X
[array-like of shape (n_samples - n_sessions*autoregressive_order, n_parcels*autoregressive_order)] The
timeseries of set of variables 1 (i.e., the regressors).

Y
[array-like of shape (n_samples - n_sessions*autoregressive_order, n_parcels)] The timeseries of set of
variables 2 (i.e., variables to predict, targets).

indices_new
[array-like of shape (n_sessions, 2)] The new array of start and end indices for each trial/session.

connectivity_new
[array-like of shape (n_parcels*autoregressive_order, n_parcels)] The new connectivity matrix indicating
which regressors should be used for each variable.

glhmm.preproc.build_data_partial_connectivity(X, Y , connectivity=None, center_data=True)
Builds X and Y for the partial connectivity model, essentially regressing out things when indicated in connec-
tivity, and getting rid of regressors / regressed variables that are not used; it return connectivity with the right
dimensions as well.

Parameters:

X
[np.ndarray of shape (n_samples, n_parcels)] The timeseries of set of variables 1 (i.e., the regressors).

Y
[np.ndarray of shape (n_samples, n_parcels)] The timeseries of set of variables 2 (i.e., variables to predict,
targets).

connectivity
[np.ndarray of shape (n_parcels, n_parcels), optional, default=None] A binary matrix indicating which
regressors affect which targets (i.e., variables to predict).

center_data
[bool, default=True] Center data to zero mean.

Returns:

X_new
[np.ndarray of shape (n_samples, n_active_parcels)] The timeseries of set of variables 1 (i.e., the regressors)
after removing unused predictors and regressing out the effects indicated in connectivity.

Y_new
[np.ndarray of shape (n_samples, n_active_parcels)] The timeseries of set of variables 2 (i.e., variables to
predict, targets) after removing unused targets and regressing out the effects indicated in connectivity.

connectivity_new
[np.ndarray of shape (n_active_parcels, n_active_parcels), optional, default=None] A binary matrix indi-
cating which regressors affect which targets The matrix has the same structure as connectivity after remov-
ing unused predictors and targets.

glhmm.preproc.build_data_tde(data, indices, lags, pca=None, standardise_pc=True)
Builds X for the temporal delay embedded HMM, as well as an adapted indices array.

22 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

data
[numpy array of shape (n_samples, n_parcels)] The data matrix.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

lags
[list or array-like] The lags to use for the embedding.

pca
[None or int or float or numpy array, default=None] The number of components for PCA, the explained
variance for PCA, the precomputed PCA projection matrix, or None to skip PCA.

standardise_pc
[bool, default=True] Whether or not to standardise the principal components before returning.

Returns:

X
[numpy array of shape (n_samples - n_sessions*rwindow, n_parcels*n_lags)] The delay-embedded time-
series data.

indices_new
[numpy array of shape (n_sessions, 2)] The adapted indices for each segment of delay-embedded data.

PCA can be run optionally: if pca >=1, that is the number of components; if pca < 1, that is explained variance;
if pca is a numpy array, then it is a precomputed PCA projection matrix; if pca is None, then no PCA is run.

glhmm.preproc.load_files(files, I=None, do_only_indices=False)

glhmm.preproc.preprocess_data(data, indices, fs=1, standardise=True, filter=None, detrend=False,
onpower=False, pca=None, whitening=False, exact_pca=True,
downsample=None)

Preprocess the input data.

Parameters:

data
[array-like of shape (n_samples, n_parcels)] The input data to be preprocessed.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

fs
[int or float, default=1] The frequency of the input data.

standardise
[bool, default=True] Whether to standardize the input data.

filter
[tuple of length 2 or None, default=None] The low-pass and high-pass thresholds to apply to the input data.
If None, no filtering will be applied. If a tuple, the first element is the low-pass threshold and the second is
the high-pass threshold.

detrend
[bool, default=False] Whether to detrend the input data.

3.2. Modules 23

GLHMM, Release 0.0.1

onpower
[bool, default=False] Whether to calculate the power of the input data using the Hilbert transform.

pca
[int or float or None, default=None] If int, the number of components to keep after applying PCA. If float,
the percentage of explained variance to keep after applying PCA. If None, no PCA will be applied.

whitening
[bool, default=False] Whether to whiten the input data after applying PCA.

exact_pca
[bool, default=True] Whether to use full SVD solver for PCA.

downsample
[int or float or None, default=None] The new frequency of the input data after downsampling. If None, no
downsampling will be applied.

Returns:

data_processed
[array-like of shape (n_samples_processed, n_parcels)] The preprocessed input data.

indices_processed
[array-like of shape (n_sessions_processed, 2)] The start and end indices of each trial/session in the pre-
processed data.

3.2.4 glhmm.auxiliary

Auxiliary functions - Gaussian Linear Hidden Markov Model @author: Diego Vidaurre 2022

glhmm.auxiliary.Gamma_entropy(Gamma, Xi, indices)
Computes the entropy of a Gamma distribution and a sequence of transition probabilities Xi.

Parameters:

Gamma
[Array-like of shape (n_samples, n_states)] The posterior probabilities of a hidden variable.

Xi
[Array-like of shape (n_samples - n_sessions, n_states, n_states)] The joint probability of past
and future states conditioned on data.

indices
[Array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input
data.

24 Chapter 3. Documentation

GLHMM, Release 0.0.1

Returns:

float: The entropy of the Gamma distribution and the sequence of transition probabilities.

glhmm.auxiliary.Gamma_indices_to_Xi_indices(indices)
Converts indices from Gamma array to Xi array format.

Note Xi has 1 sample less than Gamma per trial/session (i.e., n_samples - n_sessions).

Parameters:

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

Returns:

indices_Xi
[array-like of shape (n_sessions, 2)] The converted indices in Xi array format.

glhmm.auxiliary.approximate_Xi(Gamma, indices)
Approximates Xi array based on Gamma and indices.

Parameters:

Gamma
[array-like of shape (n_samples, n_states)] The state probability time series.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

Returns:

Xi
[array-like of shape (n_samples - n_sessions, n_states, n_states)] The joint probabilities of past and future
states conditioned on data.

glhmm.auxiliary.compute_alpha_beta(L, Pi, P)
Computes alpha and beta values and scaling factors.

Parameters:

L
[array-like of shape (n_samples, n_states)] The L matrix.

Pi
[array-like with shape (n_states,)] The initial state probabilities.

P
[array-like of shape (n_states, n_states)] The transition probabilities across states.

3.2. Modules 25

GLHMM, Release 0.0.1

Returns:

a
[array-like of shape (n_samples, n_states)] The alpha values.

b
[array-like of shape (n_samples, n_states)] The beta values.

sc
[array-like of shape (n_samples,)] The scaling factors.

glhmm.auxiliary.compute_qstar(L, Pi, P)
Compute the most probable state sequence.

Parameters:

L
[array-like of shape (n_samples, n_states)] The L matrix.

Pi
[array-like with shape (n_states,)] The initial state probabilities.

P
[array-like of shape (n_states, n_states)] The transition probabilities across states.

Returns:

qstar
[array-like of shape (n_samples, n_states)] The most probable state sequence.

glhmm.auxiliary.dirichlet_kl(alpha_q, alpha_p)
Computes the Kullback-Leibler divergence between two Dirichlet distributions with parameters alpha_q and
alpha_p.

Parameters:

alpha_q
[Array of shape (n_states,)] The concentration parameters of the first Dirichlet distribution.

alpha_p
[Array of shape (n_states,)] The concentration parameters of the second Dirichlet distribution.

Returns:

float: The Kullback-Leibler divergence between the two Dirichlet distributions.

glhmm.auxiliary.gamma_kl(shape_q, rate_q, shape_p, rate_p)
Computes the Kullback-Leibler divergence between two Gamma distributions with shape and rate parameters.

The Kullback-Leibler divergence is a measure of how different two probability distributions are.

This implementation follows the formula presented here (https://statproofbook.github.io/P/gam-kl) from the
book “KL-Divergences of Normal, Gamma, Dirichlet and Wishart densities” by Penny, William D. in 2001.

26 Chapter 3. Documentation

https://statproofbook.github.io/P/gam-kl

GLHMM, Release 0.0.1

Parameters:

shape_q
[float or numpy.ndarray] The shape parameter of the first Gamma distribution.

rate_q
[float or numpy.ndarray] The rate parameter of the first Gamma distribution.

shape_p
[float or numpy.ndarray] The shape parameter of the second Gamma distribution.

rate_p
[float or numpy.ndarray] The rate parameter of the second Gamma distribution.

Returns:

D
[float or numpy.ndarray] The Kullback-Leibler divergence between the two Gamma distributions.

glhmm.auxiliary.gauss1d_kl(mu_q, sigma_q, mu_p, sigma_p)
Computes the KL divergence between two univariate Gaussian distributions.

Parameters:

mu_q
[float of shape (n_parcels,)] The mean of the first Gaussian distribution.

sigma_q
[float of shape (n_parcels, n_parcels)] The variance of the first Gaussian distribution.

mu_p
[float of shape (n_parcels,)] The mean of the second Gaussian distribution.

sigma_p
[float of shape (n_parcels, n_parcels)] The variance of the second Gaussian distribution.

Returns:

D
[float] The KL divergence between the two Gaussian distributions.

glhmm.auxiliary.gauss_kl(mu_q, sigma_q, mu_p, sigma_p)
Computes the KL divergence between two multivariate Gaussian distributions.

3.2. Modules 27

GLHMM, Release 0.0.1

Parameters:

mu_q
[float of shape (n_parcels,)] The mean of the first Gaussian distribution.

sigma_q
[float of shape (n_parcels, n_parcels)] The variance of the first Gaussian distribution.

mu_p
[float of shape (n_parcels,)] The mean of the second Gaussian distribution.

sigma_p
[float of shape (n_parcels, n_parcels)] The variance of the second Gaussian distribution.

Returns:

D
[float] The KL divergence between the two Gaussian distributions.

glhmm.auxiliary.get_T(idx_data)
Returns the timepoints spent for each trial/session based on the given indices. We want to get the variable “T”
when we are using the function padGamma

Parameters:

idx_data (numpy.ndarray): The indices that mark the timepoints for when each trial/session starts and
ends. It should be a 2D array where each row represents the start and end index for a trial. Example:
idx_data = np.array([[0, 150], [150, 300], [300, 500]])

Returns:

T (numpy.ndarray): An array containing the timepoints spent for each trial/session. For exam-
ple, given idx_data = np.array([[0, 150], [150, 300], [300, 500]]), the function would return T =
np.array([150, 150, 200]).

glhmm.auxiliary.jls_extract_def()

glhmm.auxiliary.make_indices_from_T(T)
Creates indices array from trials/sessions lengths.

Parameters:

T
[array-like of shape (n_sessions,)] Contains the lengths of each trial/session.

28 Chapter 3. Documentation

GLHMM, Release 0.0.1

Returns:

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

glhmm.auxiliary.padGamma(Gamma, T , options)
Adjusts the state time courses to have the same size as the data time series.

Parameters:

Gamma (numpy.ndarray): The state time courses. T (numpy.ndarray): Timepoints spent for each
trial/session. options (dict): Dictionary containing various options. - ‘embeddedlags’ (list): Array of
lagging times if ‘embeddedlags’ is specified. - ‘order’ (int): Integer value if ‘order’ is specified.

Returns:

Gamma (numpy.ndarray): Adjusted state time courses.

glhmm.auxiliary.slice_matrix(M, indices)
Slices rows of input matrix M based on indices array along axis 0.

Parameters:

M
[array-like of shape (n_samples, n_parcels)] The input matrix.

indices
[array-like of shape (n_sessions, 2)] The indices that define the sections (i.e., trials/sessions) of the data to
be processed.

Returns:

M_sliced
[array-like of shape (n_total_samples, n_parcels)] The sliced matrix.

glhmm.auxiliary.wishart_kl(shape_q, C_q, shape_p, C_p)
Computes the Kullback-Leibler (KL) divergence between two Wishart distributions.

Parameters:

shape_q
[float] Shape parameter of the first Wishart distribution.

C_q
[ndarray of shape (n_parcels, n_parcels)] Scale parameter of the first Wishart distribution.

shape_p
[float] Shape parameter of the second Wishart distribution.

C_p
[ndarray of shape (n_parcels, n_parcels)] Scale parameter of the second Wishart distribution.

3.2. Modules 29

GLHMM, Release 0.0.1

Returns:

D
[float] KL divergence from the first to the second Wishart distribution.

3.2.5 glhmm.utils

Some public useful functions - Gaussian Linear Hidden Markov Model @author: Diego Vidaurre 2023

glhmm.utils.get_FO(Gamma, indices, summation=False)
Calculates the fractional occupancy of each state.

Parameters:

Gamma
[array-like, shape (n_samples, n_states)] The state probability time series.

indices
[array-like, shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

summation
[bool, optional, default=False] If True, the sum of each row is not normalized, otherwise it is.

Returns:

FO
[array-like, shape (n_sessions, n_states)] The fractional occupancy of each state per session.

glhmm.utils.get_FO_entropy(Gamma, indices)
Calculates the entropy of each session, if we understand fractional occupancies as probabilities.

Parameters:

Gamma
[array-like of shape (n_samples, n_states)] The Gamma represents the state probability timeseries.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

Returns:

entropy
[array-like of shape (n_sessions,)] The entropy of each session.

glhmm.utils.get_life_times(vpath, indices, threshold=0)
Calculates the average, median and maximum life times for each state.

30 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

vpath
[array-like of shape (n_samples,)] The viterbi path represents the most likely state sequence.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

threshold
[int, optional, default=0] A threshold value used to exclude visits with a duration below this value.

Returns:

meanLF
[array-like of shape (n_sessions, n_states)] The average visit duration for each state in each trial/session.

medianLF
[array-like of shape (n_sessions, n_states)] The median visit duration for each state in each trial/session.

maxLF
[array-like of shape (n_sessions, n_states)] The maximum visit duration for each state in each trial/session.

Notes:

A visit to a state is defined as a contiguous sequence of time points in which the state is active. The duration of
a visit is the number of time points in the sequence. This function uses the get_visits function to compute the
visits and exclude those below the threshold.

glhmm.utils.get_maxFO(Gamma, indices)
Calculates the maximum fractional occupancy per session.

The first argument can also be a viterbi path (vpath).

Parameters:

Gamma
[array-like of shape (n_samples, n_states); or a vpath, array of shape (n_samples,)] The Gamma represents
the state probability timeseries and the vpath represents the most likely state sequence.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

Returns:

maxFO: array-like of shape (n_sessions,)
The maximum fractional occupancy across states for each trial/session

3.2. Modules 31

GLHMM, Release 0.0.1

Notes:

The maxFO is useful to assess the amount of state mixing. For more information, see [^1].

References:

[^1]: Ahrends, R., et al. (2022). Data and model considerations for estimating time-varying functional
connectivity in fMRI. NeuroImage 252, 119026.

https://pubmed.ncbi.nlm.nih.gov/35217207/)

glhmm.utils.get_state_evoked_response(Gamma, indices)
Calculates the state evoked response

The first argument can also be a viterbi path (vpath).

Parameters:

Gamma
[array-like of shape (n_samples, n_states), or a vpath array of shape (n_samples,)] The Gamma represents
the state probability timeseries and the vpath represents the most likely state sequence.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

Returns:

ser
[array-like of shape (n_samples, n_states)] The state evoked response matrix.

Raises:

Exception
If the input data violates any of the following conditions: - There is only one trial/session - Not all tri-
als/sessions have the same length.

glhmm.utils.get_state_evoked_response_entropy(Gamma, indices)
Calculates the entropy of each time point, if we understand state evoked responses as probabilities.

Parameters:

Gamma: array-like of shape (n_samples, n_states)
The Gamma represents the state probability timeseries.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

32 Chapter 3. Documentation

https://pubmed.ncbi.nlm.nih.gov/35217207/

GLHMM, Release 0.0.1

Returns:

entropy: array-like of shape (n_samples,)
The entropy of each time point.

glhmm.utils.get_state_onsets(vpath, indices, threshold=0)
Calculates the state onsets, i.e., the time points when each state activates.

Parameters:

vpath
[array-like of shape (n_samples, n_states)] The viterbi path represents the most likely state sequence.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

threshold
[int, optional, default=0] A threshold value used to exclude visits with a duration below this value.

Returns:

onsets
[list of lists of ints] A list of the time points when each state activates for each trial/session.

Notes:

A visit to a state is defined as a contiguous sequence of time points in which the state is active. This function
uses the get_visits function to compute the visits and exclude those below the threshold.

glhmm.utils.get_switching_rate(Gamma, indices)
Calculates the switching rate.

The first argument can also be a viterbi path (vpath).

Parameters:

Gamma
[array-like of shape (n_samples, n_states), or a vpath array of shape (n_samples,)] The Gamma represents
the state probability timeseries and the vpath represents the most likely state sequence.

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data.

3.2. Modules 33

GLHMM, Release 0.0.1

Returns:

SR
[array-like of shape (n_sessions, n_states)] The switching rate matrix.

glhmm.utils.get_visits(vpath, k, threshold=0)
Computes a list of visits for state k, given a viterbi path (vpath).

Parameters:

vpath
[array-like of shape (n_samples,)] The viterbi path represents the most likely state sequence.

k
[int] The state for which to compute the visits.

threshold
[int, optional, default=0] A threshold value used to exclude visits with a duration below this value.

Returns:

lengths
[list of floats] A list of visit durations for state k, where each duration is greater than the threshold.

onsets
[list of ints] A list of onset time points for each visit.

Notes:

A visit to state k is defined as a contiguous sequence of time points in which state k is active.

3.2.6 glhmm.graphics

Basic graphics - Gaussian Linear Hidden Markov Model @author: Diego Vidaurre 2023

glhmm.graphics.blue_colormap()

glhmm.graphics.create_cmap_alpha(cmap_list, color_array, alpha)

glhmm.graphics.custom_colormap()

glhmm.graphics.interpolate_colormap(cmap_list)
Create a new colormap with the modified color_array.

34 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

cmap_list (numpy.ndarray): Original color array for the colormap.

Returns:

modified_cmap (numpy.ndarray): Modified colormap array.

glhmm.graphics.plot_average_probability(Gamma_reconstruct, title='Average probability for each state',
fontsize=16, figsize=(7, 5), vertical_lines=None,
line_colors=None, highlight_boxes=False)

Plots the average probability for each state over time.

Parameters:

Gamma_reconstruct
[numpy.ndarray] 3D array representing reconstructed gamma values. Shape: (num_timepoints, num_trials,
num_states)

title
[str, optional] Title for the plot (Default=’Average probability for each state’).

fontsize
[int, optional] Font size for labels and title (Default=16).

figsize
[tuple, optional] Figure size (width, height) in inches (Default=(8, 6)).

vertical_lines
[list of tuples, optional] List of pairs specifying indices for vertical lines (Default=None).

line_colors
[list of str or bool, optional] List of colors for each pair of vertical lines. If True, generates random colors
(unless a list is provided) (Default=None).

highlight_boxes
[bool, optional] Whether to include highlighted boxes for each pair of vertical lines (Default=False).

Returns:

None

glhmm.graphics.plot_condition_difference(Gamma_reconstruct, R_trials, title='Average Probability and
Difference', fontsize=16, figsize=(9, 2), vertical_lines=None,
line_colors=None, highlight_boxes=False)

Plots the average probability for each state over time for two conditions and their difference.

3.2. Modules 35

GLHMM, Release 0.0.1

Parameters:

Gamma_reconstruct
[numpy.ndarray] 3D array representing reconstructed gamma values. Shape: (num_timepoints, num_trials,
num_states)

R_trials
[numpy.ndarray] 1D array representing the condition for each trial. Should have the same length as the
second dimension of Gamma_reconstruct.

title
[str, optional] Title for the plot (Default=’Average Probability and Difference’).

fontsize
[int, optional] Font size for labels and title (Default=16).

figsize
[tuple, optional] Figure size (width, height) in inches (Default=(9, 2)).

vertical_lines
[list of tuples, optional] List of pairs specifying indices for vertical lines (Default=None).

line_colors
[list of str or bool, optional] List of colors for each pair of vertical lines. If True, generates random colors
(unless a list is provided) (Default= None).

highlight_boxes
[bool, optional] Whether to include highlighted boxes for each pair of vertical lines (Default=False).

Example usage:

plot_condition_difference(Gamma_reconstruct, R_trials, vertical_lines=[(10, 100)], highlight_boxes=True)

glhmm.graphics.plot_correlation_matrix(corr_vals, performed_tests, normalize_vals=False, figsize=(9, 5),
steps=11, title_text='Heatmap (p-values)', annot=True,
cmap_type='default', cmap_reverse=True, xlabel='', ylabel='',
xticklabels=None, none_diagonal=False, num_colors=256)

glhmm.graphics.plot_p_value_matrix(pval, alpha=0.05, normalize_vals=True, figsize=(9, 5), steps=11,
title_text='Heatmap (p-values)', annot=True, cmap_type='default',
cmap_reverse=True, xlabel='', ylabel='', xticklabels=None,
none_diagonal=False, num_colors=259)

glhmm.graphics.plot_p_values_bar(pval, variables=[], figsize=(9, 4), num_colors=256, xlabel='',
ylabel='P-values (Log Scale)', title_text='Bar Plot', tick_positions=[0,
0.001, 0.01, 0.05, 0.1, 0.3, 1], top_adjustment=0.9, alpha=0.05,
pad_title=20)

Visualize a bar plot with LogNorm and a colorbar.

36 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

variables (list): List of categories or variables. pval (array-like): Array of p-values. figsize (tuple, optional):
Figure size, default is (9, 4). num_colors (int, optional): Number of colors in the colormap, default is 256. xlabel
(str, optional): X-axis label, default is “Categories”. ylabel (str, optional): Y-axis label, default is “Values (log
scale)”. title_text (str, optional): Plot title, default is “Bar Plot with LogNorm”. tick_positions (list, optional):
Positions of ticks on the colorbar, default is [0, 0.001, 0.01, 0.05, 0.1, 0.3, 1]. top_adjustment (float, optional):
Adjustment for extra space between title and plot, default is 0.9.

Returns:

None

glhmm.graphics.plot_p_values_over_time(pval, figsize=(8, 4), total_time_seconds=None, xlabel='Time
points', ylabel='P-values (Log Scale)', title_text='P-values over
time', xlim_start=0, tick_positions=[0, 0.001, 0.01, 0.05, 0.1, 0.3,
1], num_colors=259, alpha=0.05, plot_style='line',
linewidth=2.5)

Plot a scatter plot of p-values over time with a log-scale y-axis and a colorbar.

Parameters:

pval
[numpy.ndarray] The p-values data to be plotted.

total_time_seconds (float, optional):
Total time duration in seconds. If provided, time points will be scaled accordingly.

xlabel (str, optional):
Label for the x-axis. Default is ‘Time points’.

ylabel (str, optional):
Label for the y-axis. Default is ‘Y-axis (log scale)’.

title_text (str, optional):
Title for the plot. Default is ‘P-values over time’.

tick_positions (list, optional):
Specific values to mark on the y-axis. Default is [0, 0.001, 0.01, 0.05, 0.1, 0.3, 1].

num_colors (int, optional):
Resolution for the color bar. Default is 259.

alpha (float, optional):
Alpha value is the threshold we set for the p-values when doing visualization. Default is 0.05.

plot_style (str, optional):
Style of plot. Default is ‘line’.

3.2. Modules 37

GLHMM, Release 0.0.1

Returns:

None (displays the plot).

glhmm.graphics.plot_permutation_distribution(test_statistic, title_text='Permutation Distribution',
xlabel='Test Statistic Values', ylabel='Density')

Plot the histogram of the permutation with the observed statistic marked.

Parameters:

test_statistic
[numpy.ndarray] An array containing the permutation values.

title_text
[str, optional] Title text of the plot (Default=”Permutation Distribution”).

xlabel
[str, optional] Text of the xlabel (Default=”Test Statistic Values”).

ylabel
[str, optional] Text of the ylabel (Default=”Density”).

Returns:

None
Displays the histogram plot.

glhmm.graphics.plot_scatter_with_labels(p_values, alpha=0.05, title_text='', xlabel=None, ylabel=None,
xlim_start=0.9, ylim_start=0)

Create a scatter plot to visualize p-values with labels indicating significant points.

Parameters:

p_values
[numpy.ndarray] An array of p-values. Can be a 1D array or a 2D array with shape (1, 5).

alpha
[float, optional] Threshold for significance (Default=0.05).

title_text
[str, optional] The title text for the plot (Default=””).

xlabel
[str, optional] The label for the x-axis (Default=None).

ylabel
[str, optional] The label for the y-axis (Default=None).

xlim_start
[float, optional] Start position of x-axis limits (Default=-5).

ylim_start
[float, optional] Start position of y-axis limits (Default=-0.1).

38 Chapter 3. Documentation

GLHMM, Release 0.0.1

Returns:

None

Notes:

Points with p-values less than alpha are considered significant and marked with red text.

glhmm.graphics.plot_vpath(vpath, signal=[], xlabel='Time Steps', figsize=(7, 4), ylabel='', yticks=None,
line_width=2, label_signal='Signal')

glhmm.graphics.red_colormap()

glhmm.graphics.show_Gamma(Gamma, line_overlay=None, tlim=None, Hz=1, palette='viridis')
Displays the activity of the hidden states as a function of time.

Parameters:

Gamma
[array of shape (n_samples, n_states)] The state timeseries probabilities.

line_overlay
[array of shape (n_samples, 1)] A secondary related data type to overlay as a line.

tlim
[2x1 array or None, default=None] The time interval to be displayed. If None (default), displays the entire
sequence.

Hz
[int, default=1] The frequency of the signal, in Hz.

palette
[str, default = ‘Oranges’] The name of the color palette to use.

glhmm.graphics.show_beta(hmm, only_active_states=True, recompute_states=False, X=None, Y=None,
Gamma=None, show_average=None, alpha=1.0)

Displays the beta coefficients of a given HMM. The beta coefficients can be extracted directly from the HMM
structure or reestimated from the data; for the latter, X, Y and Gamma need to be provided as parameters. This is
useful for example if one has run the model on PCA space, but wants to show coefficients in the original space.

Parameters:

hmm: HMM object
An instance of the HMM class containing the beta coefficients to be visualized.

only_active_states: bool, optional, default=False
If True, only the beta coefficients of active states are shown.

recompute_states: bool, optional, default=False
If True, the betas will be recomputed from the data and the state time courses

X: numpy.ndarray, optional, default=None
The timeseries of set of variables 1.

Y: numpy.ndarray, optional, default=None
The timeseries of set of variables 2.

3.2. Modules 39

GLHMM, Release 0.0.1

Gamma: numpy.ndarray, optional, default=None
The state time courses

show_average: bool, optional, default=None
If True, an additional row of the average beta coefficients is shown.

alpha: float, optional, default=0.1
The regularisation parameter to be applied if the betas are to be recomputed.

glhmm.graphics.show_temporal_statistic(Gamma, indices, statistic='FO', type_plot='barplot')
Plots a statistic over time for a set of sessions.

Parameters:

Gamma
[array of shape (n_samples, n_states)] The state timeseries probabilities.

indices: numpy.ndarray of shape (n_sessions,)
The session indices to plot.

statistic: str, default=’FO’
The statistic to compute and plot. Can be ‘FO’, ‘switching_rate’ or ‘FO_entropy’.

type_plot: str, default=’barplot’
The type of plot to generate. Can be ‘barplot’, ‘boxplot’ or ‘matrix’.

Raises:

Exception

• Statistic is not one of ‘FO’, ‘switching_rate’ or ‘FO_entropy’.

• type_plot is ‘boxplot’ and there are less than 10 sessions.

• type_plot is ‘matrix’ and there is only one session.

glhmm.graphics.show_trans_prob_mat(hmm, only_active_states=False, show_diag=True,
show_colorbar=True)

Displays the transition probability matrix of a given HMM.

Parameters:

hmm: HMM object
An instance of the HMM class containing the transition probability matrix to be visualized.

only_active_states
[bool, optional, default=False] Whether to display only active states or all states in the matrix.

show_diag
[bool, optional, defatult=True] Whether to display the diagonal elements of the matrix or not.

show_colorbar
[bool, optional, default=True] Whether to display the colorbar next to the matrix or not.

40 Chapter 3. Documentation

GLHMM, Release 0.0.1

3.2.7 glhmm.prediction

Prediction from Gaussian Linear Hidden Markov Model @author: Christine Ahrends 2023

glhmm.prediction.classify_phenotype(hmm, Y , behav, indices, predictor='Fisherkernel', estimator='SVM',
options=None)

Classify phenotype from HMM This uses either the Fisher kernel (default) or a set of HMM summary metrics
to make a classification, in a nested cross-validated way. By default, X is standardised/centered. Estimators so
far include: SVM and Logistic Regression Cross-validation strategies so far include: KFold and GroupKFold
Hyperparameter optimization strategies so far include: only grid search

Parameters:

hmm
[HMM object] An instance of the HMM class, estimated on the group-level

Y
[array-like of shape (n_samples, n_variables_2)] (group-level) timeseries data

behav
[array-like of shape (n_sessions,)] phenotype, behaviour, or other external labels to be predicted

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data. Note
that this function does not work if indices=None

predictor
[char (optional, default to ‘Fisherkernel’)] What to predict from, either ‘Fisherkernel’ or ‘sum-
mary_metrics’ (default=’Fisherkernel’)

estimator
[char (optional, default to ‘SVM’)] Model to be used for classification (default=’SVM’) This should be the
name of a sklearn base estimator (for now either ‘SVM’ or ‘LogisticRegression’)

options
[dict (optional, default to None)]

general relevant options are:
‘CVscheme’: char, which CVscheme to use (default: ‘GroupKFold’ if group structure is speci-
fied, otherwise: KFold) ‘nfolds’: int, number of folds k for (outer and inner) k-fold CV loops
‘group_structure’: ndarray of (n_sessions, n_sessions), matrix specifying group structure: positive
values if sessions(/subjects) are related, zeros otherwise ‘return_scores’: bool, whether to return also
the model scores of each fold ‘return_models’: bool, whether to return also the trained models of each
fold ‘return_hyperparams’: bool, whether to return also the optimised hyperparameters of each fold
possible hyperparameters for model, e.g. ‘alpha’ for (kernel) ridge regression ‘return_prob’: bool,
whether to return also the estimated probabilities

for Fisher kernel, relevant options are:
‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO) ‘incl_Pi’: bool, whether to include the gradient
w.r.t. the initial state probabilities when computing the Fisher kernel ‘incl_P’: bool, whether to include
the gradient w.r.t. the transition probabilities ‘incl_Mu’: bool, whether to include the gradient w.r.t. the
state means (note that this only works if means were not set to 0 when training HMM) ‘incl_Sigma’:
bool, whether to include the gradient w.r.t. the state covariances

for summary metrics, relevant options are:
‘metrics’: list of char, containing metrics to be included as features

3.2. Modules 41

GLHMM, Release 0.0.1

Returns:

results
[dict] containing ‘behav_pred’: predicted labels on test sets ‘acc’: overall accuracy (if requested): ‘be-
hav_prob’: predicted probabilities of each class on test set ‘scores’: the model scores of each fold ‘models’:
the trained models from each fold ‘hyperparams’: the optimised hyperparameters of each fold

Raises:

Exception
If the hmm has not been trained or if necessary input is missing

Notes:

If behav contains NaNs, these subjects/sessions will be removed in Y and confounds

glhmm.prediction.compute_gradient(hmm, Y , incl_Pi=True, incl_P=True, incl_Mu=False,
incl_Sigma=True)

Computes the gradient of the log-likelihood for timeseries Y with respect to specified HMM parameters

Parameters:

hmm
[HMM object] An instance of the HMM class, estimated on the group-level

Y
[array-like of shape (n_samples, n_variables_2)] (subject- or session-level) timeseries data

incl_Pi
[bool, default=True] whether to compute gradient w.r.t state probabilities

incl_P
[bool, default=True] whether to compute gradient w.r.t. transition probabilities

incl_Mu
[bool, default=False] whether to compute gradient w.r.t state means (only possible if state means were
estimated during training)

incl_Sigma
[bool, default=False] whether to compute gradient w.r.t. state covariances (for now only for full covariance
matrix)

Returns:

hmmgrad : array of shape (sum(len(requested_parameters)))

42 Chapter 3. Documentation

GLHMM, Release 0.0.1

Raises:

Exception
If the model has not been trained or if requested parameters do not exist (e.g. if Mu is requested but state
means were not estimated)

Notes:

Does not include gradient computation for X and beta

glhmm.prediction.deconfound(Y , confX, betaY=None, my=None)
Deconfound

glhmm.prediction.get_groups(group_structure)
Util function to get groups from group structure matrix such as family structure. Output can be used to make
sure groups/families are not split across folds during cross validation, e.g. using sklearn’s GroupKFold. Groups
are defined as components in the adjacency matrix.

Parameter:

group_structure
[array-like of shape (n_sessions, n_sessions)] a matrix specifying the structure of the dataset, with posi-
tive values indicating relations between sessions(/subjects) and zeros indicating no relations. Note: The
diagonal will be set to 1

Returns:

cs
[array-like of shape (n_sessions,)] 1D array containing the group each session belongs to

glhmm.prediction.get_summ_features(hmm, Y , indices, metrics)
Util function to get summary features from HMM. Output can be used as input features for ML

Parameters:

hmm
[HMM object] An instance of the HMM class, estimated on the group-level

Y
[array-like of shape (n_samples, n_variables_2)] (group-level) timeseries data

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data. Note
that kernel cannot be computed if indices=None

metrics
[list] names of metrics to be extracted. For now, this should be one or more of ‘FO’, ‘switching_rate’,
‘lifetimes’

3.2. Modules 43

GLHMM, Release 0.0.1

Returns:

features
[array-like of shape (n_sessions, n_features)] The HMM summary metrics collected into a feature matrix

glhmm.prediction.hmm_kernel(hmm, Y , indices, type='Fisher', shape='linear', incl_Pi=True, incl_P=True,
incl_Mu=False, incl_Sigma=True, tau=None, return_feat=False,
return_dist=False)

Constructs a kernel from an HMM, as well as the respective feature matrix and/or distance matrix

Parameters:

hmm
[HMM object] An instance of the HMM class, estimated on the group-level

Y
[array-like of shape (n_samples, n_variables_2)] (group-level) timeseries data

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data. Note
that kernel cannot be computed if indices=None

type
[str, optional] The type of kernel to be constructed (default: ‘Fisher’)

shape
[str, optional] The shape of kernel to be constructed, either ‘linear’ or ‘Gaussian’ (default: ‘linear’)

incl_Pi
[bool, default=True] whether to include state probabilities in kernel construction

incl_P
[bool, default=True] whether to include transition probabilities in kernel construction

incl_Mu
[bool, default=False] whether to include state means in kernel construction (only possible if state means
were estimated during training)

incl_Sigma
[bool, default=False] whether to include state covariances in kernel construction (for now only for full
covariance matrix)

return_feat
[bool, default=False] whether to return also the feature matrix

return_dist
[bool, default=False] whether to return also the distance matrix

44 Chapter 3. Documentation

GLHMM, Release 0.0.1

Returns:

kernel
[array of shape (n_sessions, n_sessions)] HMM Kernel for subjects/sessions contained in Y

feat
[array of shape (n_sessions, sum(len(requested_parameters)))] Feature matrix for subjects/sessions con-
tained in Y for requested parameters

dist
[array of shape (n_sessions, n_sessions)] Distance matrix for subjects/sessions contained in Y

Raises:

Exception
If the hmm has not been trained or if requested parameters do not exist (e.g. if Mu is requested but state
means were not estimated) If kernel other than Fisher kernel is requested

Notes:

Does not include X and beta in kernel construction Only Fisher kernel implemented at this point

glhmm.prediction.predict_phenotype(hmm, Y , behav, indices, predictor='Fisherkernel',
estimator='KernelRidge', options=None)

Predict phenotype from HMM This uses either the Fisher kernel (default) or a set of HMM summary metrics to
predict a phenotype, in a nested cross-validated way. By default, X and Y are standardised/centered unless de-
confounding is used. Estimators so far include: Kernel Ridge Regression and Ridge Regression Cross-validation
strategies so far include: KFold and GroupKFold Hyperparameter optimization strategies so far include: only
grid search

Parameters:

hmm
[HMM object] An instance of the HMM class, estimated on the group-level

Y
[array-like of shape (n_samples, n_variables_2)] (group-level) timeseries data

behav
[array-like of shape (n_sessions,)] phenotype, behaviour, or other external variable to be predicted

indices
[array-like of shape (n_sessions, 2)] The start and end indices of each trial/session in the input data. Note
that this function does not work if indices=None

predictor
[char (optional, default to ‘Fisherkernel’)] What to predict from, either ‘Fisherkernel’ or ‘sum-
mary_metrics’ (default=’Fisherkernel’)

estimator
[char (optional, default to ‘KernelRidge’)] Model to be used for prediction (default=’KernelRidge’) This
should be the name of a sklearn base estimator (for now either ‘KernelRidge’ or ‘Ridge’)

options
[dict (optional, default to None)]

3.2. Modules 45

GLHMM, Release 0.0.1

general relevant options are:
‘CVscheme’: char, which CVscheme to use (default: ‘GroupKFold’ if group structure is speci-
fied, otherwise: KFold) ‘nfolds’: int, number of folds k for (outer and inner) k-fold CV loops
‘group_structure’: ndarray of (n_sessions, n_sessions), matrix specifying group structure: positive
values if sessions(/subjects) are related, zeros otherwise ‘confounds’: array-like of shape (n_sessions,)
or (n_sessions, n_confounds) containing confounding variables ‘return_scores’: bool, whether to re-
turn also the model scores of each fold ‘return_models’: bool, whether to return also the trained models
of each fold ‘return_hyperparams’: bool, whether to return also the optimised hyperparameters of each
fold possible hyperparameters for model, e.g. ‘alpha’ for (kernel) ridge regression

for Fisher kernel, relevant options are:
‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO) ‘incl_Pi’: bool, whether to include the gradient
w.r.t. the initial state probabilities when computing the Fisher kernel ‘incl_P’: bool, whether to include
the gradient w.r.t. the transition probabilities ‘incl_Mu’: bool, whether to include the gradient w.r.t. the
state means (note that this only works if means were not set to 0 when training HMM) ‘incl_Sigma’:
bool, whether to include the gradient w.r.t. the state covariances

for summary metrics, relevant options are:
‘metrics’: list of char, containing metrics to be included as features

Returns:

results
[dict] containing ‘behav_pred’: predicted phenotype on test sets ‘corr’: correlation coefficient between
predicted and actual values (if requested): ‘scores’: the model scores of each fold ‘models’: the trained
models from each fold ‘hyperparams’: the optimised hyperparameters of each fold

Raises:

Exception
If the hmm has not been trained or if necessary input is missing

Notes:

If behav contains NaNs, these subjects/sessions will be removed in Y and confounds

glhmm.prediction.reconfound(Y , conf , betaY , my)
Reconfound

glhmm.prediction.test_classif(hmm, Y , indices, model_tuned, scaler_x, behav=None, train_indices=None,
predictor='Fisherkernel', estimator='SVM', options=None)

Test classification model from HMM This uses either the Fisher kernel (default) or a set of HMM summary
metrics to make a classification, in a nested cross-validated way. The specified predictor and estimator must be
the same as the ones used to train the classifier. By default, X is standardised/centered. Note: When using a
kernel method (e.g. Fisher kernel), Y must be the timeseries of both training and test set to construct the correct
kernel, and indices of the training sessions (train_indices) must be provided. When using summary metrics, Y
must be the timeseries of only the test set, and train_indices should be None.

46 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

hmm
[HMM object] An instance of the HMM class, estimated on the group-level

Y
[array-like of shape (n_samples, n_variables_2)] (group-level) timeseries data of test set

indices
[array-like of shape (n_test_sessions, 2) or (n_sessions, 2)] The start and end indices of each trial/session in
the test data (when using features) or in the train and test data (when using kernel). Note that this function
does not work if indices=None

model_tuned
[estimator] the trained and (if applicable) hyperparameter-optimised scikit-learn estimator

scaler_x
[estimator] the trained standard scaler/kernel centerer of the features/kernel x

behav
[array-like of shape (n_test_sessions,) (optional)] phenotype, behaviour, or other external label of test set,
to be compared with the predicted labels

train_indices
[array-like of shape (n_train_sessions,) (optional, only use when using kernel)] the indices of the ses-
sions/subjects used for training. The function assumes that test indices are all other sessions.

predictor
[char (optional, default to ‘Fisherkernel’)] What to predict from, either ‘Fisherkernel’ or ‘sum-
mary_metrics’ (default=’Fisherkernel’)

estimator
[char (optional, default to ‘SVM’)] Model to be used for classification (default=’SVM’) This should be the
name of a sklearn base estimator (for now either ‘SVM’ or ‘LogisticRegression’)

options
[dict (optional, default to None)]

general relevant options are:
‘return_prob’: bool, whether to return also the estimated probabilities ‘return_models’: whether to
return also the model

for Fisher kernel, relevant options are:
‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO) ‘incl_Pi’: bool, whether to include the gradient
w.r.t. the initial state probabilities when computing the Fisher kernel ‘incl_P’: bool, whether to include
the gradient w.r.t. the transition probabilities ‘incl_Mu’: bool, whether to include the gradient w.r.t. the
state means (note that this only works if means were not set to 0 when training HMM) ‘incl_Sigma’:
bool, whether to include the gradient w.r.t. the state covariances

for summary metrics, relevant options are:
‘metrics’: list of char, containing metrics to be included as features

3.2. Modules 47

GLHMM, Release 0.0.1

Returns:

results
[dict] containing ‘behav_pred’: predicted labels on test sets ‘acc’: overall accuracy (if requested): ‘be-
hav_prob’: predicted probabilities of each class on test set ‘scores’: the model scores of each fold ‘models’:
the trained model

Raises:

Exception
If the hmm has not been trained or if necessary input is missing

glhmm.prediction.test_pred(hmm, Y , indices, model_tuned, scaler_x, scaler_y=None, behav=None,
train_indices=None, CinterceptY=None, CbetaY=None,
predictor='Fisherkernel', estimator='KernelRidge', options=None)

Test prediction model from HMM This uses either the Fisher kernel (default) or a set of HMM summary metrics
to predict a phenotype, in a nested cross-validated way. The specified predictor and estimator must be the same
as the ones used to train the model. By default, X and Y are standardised/centered unless deconfounding is used.
Note: When using a kernel method (e.g. Fisher kernel), Y must be the timeseries of both training and test set to
construct the correct kernel, and indices of the training sessions (train_indices) must be provided. When using
summary metrics, Y must be the timeseries of only the test set, and train_indices should be None. When using
deconfounding, CinterceptY and CbetaY need to be specified

Parameters:

hmm
[HMM object] An instance of the HMM class, estimated on the group-level

Y
[array-like of shape (n_samples, n_variables_2)] (group-level) timeseries data of test set

indices
[array-like of shape (n_test_sessions, 2) or (n_sessions, 2)] The start and end indices of each trial/session in
the test data (when using features) or in the train and test data (when using kernel). Note that this function
does not work if indices=None

model_tuned
[estimator] the trained and (if applicable) hyperparameter-optimised scikit-learn estimator

scaler_x
[estimator] the trained standard scaler/kernel centerer of the features/kernel x

scaler_y
[estimator (optional, only specify when not using deconfounding)] the trained standard scaler of the variable
to be predicted y.

behav
[array-like of shape (n_test_sessions,) (optional)] phenotype, behaviour, or other external variable of test
set, to be compared with the predicted values

train_indices
[array-like of shape (n_train_sessions,) (optional, only use when using kernel)] the indices of the ses-
sions/subjects used for training. The function assumes that test indices are all other sessions.

CinterceptY
[float (optional, only specify when using deconfounding)] the estimated intercept for deconfounding

48 Chapter 3. Documentation

GLHMM, Release 0.0.1

CbetaY
[array-like of shape (n_confounds) (optional, only specify when using deconfounding)] the estimated beta
weights for deconfounding of each confound

predictor
[char (optional, default to ‘Fisherkernel’)] What to predict from, either ‘Fisherkernel’ or ‘sum-
mary_metrics’ (default=’Fisherkernel’)

estimator
[char (optional, default to ‘KernelRidge’)] Model to be used for prediction (default=’KernelRidge’) This
should be the name of a sklearn base estimator (for now either ‘KernelRidge’ or ‘Ridge’)

options
[dict (optional, default to None)]

general relevant options are:
‘confounds’: array-like of shape (n_test_sessions,) or (n_test_sessions, n_confounds) containing con-
founding variables ‘return_models’: whether to return also the model

for Fisher kernel, relevant options are:
‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO) ‘incl_Pi’: bool, whether to include the gradient
w.r.t. the initial state probabilities when computing the Fisher kernel ‘incl_P’: bool, whether to include
the gradient w.r.t. the transition probabilities ‘incl_Mu’: bool, whether to include the gradient w.r.t. the
state means (note that this only works if means were not set to 0 when training HMM) ‘incl_Sigma’:
bool, whether to include the gradient w.r.t. the state covariances

for summary metrics, relevant options are:
‘metrics’: list of char, containing metrics to be included as features

Returns:

results
[dict] containing ‘behav_pred’: predicted phenotype on test sets (if behav was specified): ‘corr’: correla-
tion coefficient between predicted and actual values ‘scores’: the model scores of each fold (if requested):
‘model’: the trained model

Raises:

Exception
If the hmm has not been trained or if necessary input is missing

glhmm.prediction.train_classif(hmm, Y , behav, indices, predictor='Fisherkernel', estimator='SVM',
options=None)

Train classification model from HMM This uses either the Fisher kernel (default) or a set of HMM summary
metrics to make a classification, in a nested cross-validated way. By default, X is standardised/centered. Note
that all outputs need to be passed on to test_classif to ensure that training and test variables are preprocessed in
the same way, while avoiding leakage between training and test set. Estimators so far include: SVM and Logistic
Regression Cross-validation strategies so far include: KFold and GroupKFold Hyperparameter optimization
strategies so far include: grid search, no hyperparameter optimisation

3.2. Modules 49

GLHMM, Release 0.0.1

Parameters:

hmm
[HMM object] An instance of the HMM class, estimated on the group-level

Y
[array-like of shape (n_samples, n_variables_2)] (group-level) timeseries data of training set

behav
[array-like of shape (n_train_sessions,)] phenotype, behaviour, or other external labels of training set to be
predicted

indices
[array-like of shape (n_train_sessions, 2)] The start and end indices of each trial/session in the training set.
Note that this function does not work if indices=None

predictor
[char (optional, default to ‘Fisherkernel’)] What to predict from, either ‘Fisherkernel’ or ‘sum-
mary_metrics’ (default=’Fisherkernel’)

estimator
[char (optional, default to ‘SVM’)] Model to be used for classification (default=’SVM’) This should be the
name of a sklearn base estimator (for now either ‘SVM’ or ‘LogisticRegression’)

options
[dict (optional, default to None)]

general relevant options are:

‘optim_hyperparam’
[char, which hyperparameter optimisation strategy to use (default: ‘GridSearchCV’).] If you don’t
want to use hyperparameter optimisation, set this to None and specify the hyperparameter (alpha)
as an option When using hyperparameter optimisation, additional relevant options are:

‘CVscheme’: char, which CVscheme to use (default: ‘GroupKFold’ if group structure is
specified, otherwise: KFold) ‘nfolds’: int, number of folds k for (outer and inner) k-fold CV
loops ‘group_structure’: ndarray of (n_train_sessions, n_train_sessions), matrix specifying
group structure: positive values if samples are related, zeros otherwise

possible hyperparameters for model, e.g. ‘C’ for SVM ‘return_prob’: bool, whether to also estimate
the probabilities

for Fisher kernel, relevant options are:
‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO) ‘incl_Pi’: bool, whether to include the gradient
w.r.t. the initial state probabilities when computing the Fisher kernel ‘incl_P’: bool, whether to include
the gradient w.r.t. the transition probabilities ‘incl_Mu’: bool, whether to include the gradient w.r.t. the
state means (note that this only works if means were not set to 0 when training HMM) ‘incl_Sigma’:
bool, whether to include the gradient w.r.t. the state covariances

for summary metrics, relevant options are:
‘metrics’: list of char, containing metrics to be included as features

50 Chapter 3. Documentation

GLHMM, Release 0.0.1

Returns:

model_tuned
[estimator] the trained and (if applicable) hyperparameter-optimised scikit-learn estimator

scaler_x
[estimator] the trained standard scaler/kernel centerer of the features/kernel x

Raises:

Exception
If the hmm has not been trained or if necessary input is missing

Notes:

If behav contains NaNs, these subjects/sessions will be removed

glhmm.prediction.train_pred(hmm, Y , behav, indices, predictor='Fisherkernel', estimator='KernelRidge',
options=None)

Train prediction model from HMM This uses either the Fisher kernel (default) or a set of HMM summary met-
rics to predict a phenotype, in a nested cross-validated way. By default, X and Y are standardised/centered
unless deconfounding is used. Note that all outputs except behavD, i.e. model and scalers, need to be passed
on to test_pred to ensure that training and test variables are preprocessed in the same way, while avoiding leak-
age between training and test set. Estimators so far include: Kernel Ridge Regression and Ridge Regression
Cross-validation strategies so far include: KFold and GroupKFold Hyperparameter optimization strategies so
far include: grid search, no hyperparameter optimisation

Parameters:

hmm
[HMM object] An instance of the HMM class, estimated on the group-level

Y
[array-like of shape (n_samples, n_variables_2)] (group-level) timeseries data of training set

behav
[array-like of shape (n_train_sessions,)] phenotype, behaviour, or other external variable of training set

indices
[array-like of shape (n_train_sessions, 2)] The start and end indices of each trial/session in the training data.
Note that this function does not work if indices=None

predictor
[char (optional, default to ‘Fisherkernel’)] What to predict from, either ‘Fisherkernel’ or ‘sum-
mary_metrics’ (default=’Fisherkernel’)

estimator
[char (optional, default to ‘KernelRidge’)] Model to be used for prediction (default=’KernelRidge’) This
should be the name of a sklearn base estimator (for now either ‘KernelRidge’ or ‘Ridge’)

options
[dict (optional, default to None)]

general relevant options are:

3.2. Modules 51

GLHMM, Release 0.0.1

‘optim_hyperparam’
[char, which hyperparameter optimisation strategy to use (default: ‘GridSearchCV’).] If you don’t
want to use hyperparameter optimisation, set this to None and specify the hyperparameter (alpha)
as an option When using hyperparameter optimisation, additional relevant options are:

‘CVscheme’: char, which CVscheme to use (default: ‘GroupKFold’ if group structure is
specified, otherwise: KFold) ‘nfolds’: int, number of folds k for (outer and inner) k-fold CV
loops ‘group_structure’: ndarray of (n_train_sessions, n_train_sessions), matrix specifying
group structure: positive values if samples are related, zeros otherwise

‘confounds’: array-like of shape (n_train_sessions,) or (n_train_sessions, n_confounds) containing
confounding variables possible hyperparameters for model, e.g. ‘alpha’ for (kernel) ridge regression

for Fisher kernel, relevant options are:
‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO) ‘incl_Pi’: bool, whether to include the gradient
w.r.t. the initial state probabilities when computing the Fisher kernel ‘incl_P’: bool, whether to include
the gradient w.r.t. the transition probabilities ‘incl_Mu’: bool, whether to include the gradient w.r.t. the
state means (note that this only works if means were not set to 0 when training HMM) ‘incl_Sigma’:
bool, whether to include the gradient w.r.t. the state covariances

for summary metrics, relevant options are:
‘metrics’: list of char, containing metrics to be included as features

Returns:

model_tuned
[estimator] the trained and (if applicable) hyperparameter-optimised scikit-learn estimator

scaler_x
[estimator] the trained standard scaler/kernel centerer of the features/kernel x

(if not using deconfounding): scaler_y : estimator

the trained standard scaler of the variable to be predicted y.

(if using deconfounding): CinterceptY : float

the estimated intercept for deconfounding

CbetaY
[array-like of shape (n_confounds)] the estimated beta weights for deconfounding of each confound

behavD
[array-like of shape (n_train_sessions)] the phenotype/behaviour in deconfounded space

Raises:

Exception
If the hmm has not been trained or if necessary input is missing

52 Chapter 3. Documentation

GLHMM, Release 0.0.1

Notes:

If behav contains NaNs, these subjects/sessions will be removed in Y and confounds

3.2.8 glhmm.statistics

Permutation testing from Gaussian Linear Hidden Markov Model @author: Nick Y. Larsen 2023

glhmm.statistics.calculate_baseline_difference(vpath_array, R_data, state, pairwise_statistic)
Calculate the difference between the specified statistics of a state and all other states combined.

Parameters:

vpath_data (numpy.ndarray): The Viterbi path as of integer values that range from 1 to n_states.
R_data (numpy.ndarray): The dependent-variable associated with each state. state(numpy.ndarray):
the state for which the difference is calculated. pairwise_statistic (str) The chosen statistic to be cal-
culated. Valid options are “mean” or “median”.

Returns:

difference (float) the calculated difference between the specified state and all other states combined.

glhmm.statistics.calculate_geometric_pval(p_values, test_combination)
Calculate test statistics of z-scores converted from p-values based on the specified combination.

Parameters:

p_values (numpy.ndarray): Matrix of p-values. test_combination (str): Specifies the combination
method.

Valid options: “True”, “across_columns”, “across_rows”. Default is “True”.

Returns:

result (numpy.ndarray): Test statistics of z-scores converted from p-values.

glhmm.statistics.calculate_nan_correlation_matrix(D_data, R_data, test_combination=False,
reduce_pval_dims=False)

Calculate the correlation matrix between independent variables (D_data) and dependent variables (R_data),
while handling NaN values column by column of dimension p without without removing entire rows.

3.2. Modules 53

GLHMM, Release 0.0.1

Parameters:

D_data (numpy.ndarray): Input data matrix for the independent variables. R_data (numpy.ndarray):
Input data matrix for the dependent variables.

Returns:

correlation_matrix (numpy.ndarray): Correlation matrix between columns in D_data and R_data.

glhmm.statistics.calculate_nan_f_test(D_data, R_column, nan_values=False)

Calculate F-statistics for each feature of D_data against categories in R_data, while handling NaN values
column by column without removing entire rows.

• The function handles NaN values for each feature in D_data without removing entire rows.

• NaN values are omitted on a feature-wise basis, and the F-statistic is calculated for each feature.

• The resulting array contains F-statistics corresponding to each feature in D_data.

Parameters:

D_data (numpy.ndarray): The input matrix of shape (n_samples, n_features). R_column
(numpy.ndarray): The categorical labels corresponding to each sample in D_data.

Returns:

f_test (numpy.ndarray): An array containing F-statistics for each feature in D_data against the cate-
gories in R_data.

glhmm.statistics.calculate_nan_regression(Din, Rin, proj)
Calculate the R-squared values for the regression of each dependent variable in Rin on the independent variables
in Din, while handling NaN values column-wise.

Parameters:

Din (numpy.ndarray): Input data matrix for the independent variables. Rin (numpy.ndarray): Input
data matrix for the dependent variables. proj (numpy.ndarray): Projection matrix.

Returns:

R2_test (numpy.ndarray): Array of R-squared values for each regression.

glhmm.statistics.calculate_nan_regression_f_test(Din, Rin, proj, nan_values=False)
Calculate the f-test values for the regression of each dependent variable in Rin on the independent variables in
Din, while handling NaN values column-wise.

54 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

Din (numpy.ndarray): Input data matrix for the independent variables. Rin (numpy.ndarray): Input
data matrix for the dependent variables. proj (numpy.ndarray): Projection matrix.

Returns:

R2_test (numpy.ndarray): Array of f-test values for each regression.

glhmm.statistics.calculate_nan_t_test(D_data, R_column, nan_values=False)

Calculate the t-statistics between paired independent (D_data) and dependent (R_data) variables, while
handling NaN values column by column without removing entire rows.

• The function handles NaN values for each feature in D_data without removing entire rows.

• NaN values are omitted on a feature-wise basis, and the t-statistic is calculated for each feature.

• The resulting array contains t-statistics corresponding to each feature in D_data.

Parameters:

D_data (numpy.ndarray): The input matrix of shape (n_samples, n_features). R_column
(numpy.ndarray): The binary labels corresponding to each sample in D_data.

Returns:

t_test (numpy.ndarray): An array containing t-statistics for each feature in D_data against the binary
categories in R_data.

glhmm.statistics.calculate_statepair_difference(vpath_array, R_data, state_1, state_2, stat)
Calculate the difference between the specified statistics of two states.

Parameters:

vpath_data (numpy.ndarray): The Viterbi path as of integer values that range from 1 to n_states.
R_data (numpy.ndarray): The dependent-variable associated with each state. state_1 (int): First state
for comparison. state_2 (int): Second state for comparison. statistic (str): The chosen statistic to be
calculated. Valid options are “mean” or “median”.

Returns:

difference (float): The calculated difference between the two states.

glhmm.statistics.deconfound_values(D_data, R_data, confounds=None)
Deconfound the variables R_data and D_data for permutation testing.

3.2. Modules 55

GLHMM, Release 0.0.1

Parameters:

D_data (numpy.ndarray): The input data array. R_data (numpy.ndarray or None): The second input
data array (default: None).

If None, assumes we are working across visits, and R_data represents the Viterbi path of a
sequence.

confounds (numpy.ndarray or None): The confounds array (default: None).

Returns:

numpy.ndarray: Deconfounded D_data array. numpy.ndarray: Deconfounded R_data array (returns
None if R_data is None).

If R_data is None, assumes we are working across visits

glhmm.statistics.detect_significant_intervals(pval, alpha)
Detect intervals of consecutive True values in a boolean array.

Parameters

• p_values (numpy.ndarray) – An array of p-values.

• alpha (float, optional) – Threshold for significance (Default=0.05).

• Returns –

• ---------- –

• tuple (list of) – (inclusive) of each interval of consecutive True values.

• Example – array = [False, False, False, True, True, True, False, False, True, True, False]
detect_intervals(array) output: [(3, 5), (8, 9)]

glhmm.statistics.generate_vpath_1D(vpath)
Convert a 2D array representing a matrix with one non-zero element in each row into a 1D array where each
element is the column index of the non-zero element.

Parameters
vpath (numpy.ndarray) – A 2D array where each row has only one non-zero element. Or a 1D
array where each row represents a sate number

Returns

A 1D array containing the column indices of the non-zero elements.
If the input array is already 1D, it returns a copy of the input array.

Return type
vpath_array(numpy.ndarray)

glhmm.statistics.get_concatenate_sessions(D_sessions, R_sessions, idx_sessions)
Converts a 3D matrix into a 2D matrix by concatenating timepoints of every trial session into a new design
matrix.

56 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

D_sessions (numpy.ndarray): Design matrix for each session. R_sessions (numpy.ndarray): R matrix
time for each trial. idx_sessions (numpy.ndarray): Indices representing the start and end of trials for
each session.

Returns:

D_con (numpy.ndarray): Concatenated design matrix. R_con (numpy.ndarray): Concatenated R ma-
trix. idx_sessions_con (numpy.ndarray): Updated indices after concatenation.

glhmm.statistics.get_indices_array(idx_data)
Generates an indices array based on given data indices.

Parameters:

idx_data (numpy.ndarray): The data indices array.

Returns:

idx_array (numpy.ndarray): The generated indices array.

glhmm.statistics.get_indices_from_list(data_list, count_timestamps=True)
Generate indices representing the start and end timestamps for each subject or session from a given data list.

Parameters:

data_list (list): List containing data for each subject or session. count_timestamps (bool): If True,
counts timestamps for each element in data_list, otherwise assumes each element in data_list is already
a count of timestamps.

Returns:

indices (ndarray): NumPy array with start and end indices for each subject’s timestamps.

glhmm.statistics.get_input_shape(D_data, R_data, verbose)
Computes the input shape parameters for permutation testing.

Parameters:

D_data (numpy.ndarray): The input data array. R_data (numpy.ndarray): The dependent variable.
verbose (bool): If True, display progress messages. If False, suppress progress messages.

3.2. Modules 57

GLHMM, Release 0.0.1

Returns:

n_T (int): The number of timepoints. n_ST (int): The number of subjects or trials. n_p (int): The
number of features. D_data (numpy.ndarray): The updated input data array. R_data (numpy.ndarray):
The updated dependent variable.

glhmm.statistics.get_pval(test_statistics, Nperm, method, t, pval, FWER_correction=False,
test_combination=False)

Computes p-values and correlation matrix for permutation testing.

Parameters:

test_statistics (numpy.ndarray): The permutation array. pval_perms (numpy.ndarray): The p-value
permutation array. Nperm (int): The number of permutations. method (str): The method used for
permutation testing. t (int): The timepoint index. pval (numpy.ndarray): The p-value array.

Returns:

pval (numpy.ndarray): Updated updated p-value .

Ref: https://github.com/OHBA-analysis/HMM-MAR/blob/master/utils/testing/permtest_aux.m

glhmm.statistics.get_session_indices(data_label)
Generate session indices in the data based on provided labels. This is done by using ‘data_label’ to define sessions
and generates corresponding indices. The resulting ‘idx_data_sessions’ array represents the intervals for each
session in the data.

Parameters:

data_label (ndarray): NumPy array representing the labels for data to be indexed into sessions.

Returns:

idx_data_sessions (ndarray): The indices of datapoints within each session. It should be a 2D
array

where each row represents the start and end index for a trial.

Example: get_session_indices(np.array([1, 1, 2, 2, 2, 3, 3, 3, 3])) array([[0, 2],

[2, 5], [5, 9]])

glhmm.statistics.get_timestamp_indices(n_timestamps, n_subjects)
Generate indices of the timestamps for each subject in the data.

58 Chapter 3. Documentation

https://github.com/OHBA-analysis/HMM-MAR/blob/master/utils/testing/permtest_aux.m

GLHMM, Release 0.0.1

Parameters:

n_timestamps (int): Number of timestamps. n_subjects (int): Number of subjects.

Returns:

indices (ndarray): NumPy array representing the indices of the timestamps for each subject.

Example: get_timestamp_indices(5, 3) array([[0, 5],

[5, 10], [10, 15]])

glhmm.statistics.identify_coloumns_for_t_and_f_tests(R_data, method, identify_categories=True,
category_lim=None)

Detect columns in R_data that are categorical. Used to detect which columns to perm t-statistics and F-statistics
for later analysis.

Parameters:

R_data
[numpy.ndarray] The 3D array containing categorical values.

identify_categories
[bool or list or numpy.ndarray, optional, default=True] If True, automatically identify categorical columns.
If list or ndarray, use the provided list of column indices.

method
[str, optional, default=”univariate”] The method to perform the tests. Only “univariate” is currently sup-
ported.

category_lim
[int or None, optional, default=None] Maximum allowed number of categories for F-test. Acts as a safety
measure for columns with integer values, like age, which may be mistakenly identified as multiple cate-
gories.

Returns:

dict
A dictionary containing the columns for t-test (“t_test_cols”) and F-test (“f_test_cols”).

Note: The function modifies the input dictionary category_columns in place.

glhmm.statistics.initialize_arrays(R_data, n_p, n_q, n_T , method, Nperm, test_statistics_option,
test_combination=False)

glhmm.statistics.initialize_permutation_matrices(method, Nperm, n_p, n_q, D_data,
test_combination=False)

Initializes the permutation matrices and projection matrix for permutation testing.

3.2. Modules 59

GLHMM, Release 0.0.1

Parameters:

method (str): The method to use for permutation testing. Nperm (int): The number of permutations.
n_p (int): The number of features. n_q (int): The number of predictions. D_data (numpy.ndarray):
The independent variable.

Returns:

test_statistics (numpy.ndarray): The permutation array. pval_perms (numpy.ndarray): The p-value
permutation array. proj (numpy.ndarray or None): The projection matrix (None for correlation meth-
ods).

glhmm.statistics.permutation_matrix_across_subjects(Nperm, D_t)
Generates a normal permutation matrix with the assumption that each index is independent across subjects.

Parameters:

Nperm (int): The number of permutations. D_t (numpy.ndarray): The preprocessed data array.

Returns:

permutation_matrix (numpy.ndarray): Permutation matrix of subjects it got a shape (n_ST, Nperm)

glhmm.statistics.permutation_matrix_across_trials_within_session(Nperm, R_t, idx_array,
trial_timepoints=None)

Generates permutation matrix of within-session across-trial data based on given indices.

Parameters:

Nperm (int): The number of permutations. R_t (numpy.ndarray): The preprocessed data array.
idx_array (numpy.ndarray): The indices array. trial_timepoints (int): Number of timepoints for each
trial (default: None)

Returns:

permutation_matrix (numpy.ndarray): Permutation matrix of subjects it got a shape (n_ST, Nperm)

glhmm.statistics.permutation_matrix_within_subject_across_sessions(Nperm, D_t, idx_array)
Generates permutation matrix of within-session across-session data based on given indices.

60 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

Nperm (int): The number of permutations. D_t (numpy.ndarray): The preprocessed data array.
idx_array (numpy.ndarray): The indices array.

Returns:

permutation_matrix (numpy.ndarray): The within-session continuos indices array.

glhmm.statistics.permute_subject_trial_idx(idx_array)
Permutes an array based on unique values while maintaining the structure.

Parameters:

idx_array (numpy.ndarray): Input array to be permuted.

Returns:

list: Permuted array based on unique values.

glhmm.statistics.process_family_structure(dict_family, Nperm)

Process a dictionary containing family structure information.

Parameters:

dict_family (dict): Dictionary containing family structure information.
file_location (str): The file location of the family structure data in CSV format. M
(numpy.ndarray, optional): The matrix of attributes, which is not typically required.

Defaults to None.

nP (int): The number of permutations to generate. CMC (bool, optional): A flag indicating
whether to use the Conditional Monte Carlo method (CMC).

Defaults to False.

EE (bool, optional): A flag indicating whether to assume exchangeable errors, which
allows permutation.

Defaults to True.

Nperm (int): Number of permutations.

Returns:

dict_mfam (dict): Modified dictionary with processed values.
EB (numpy.ndarray): Block structure representing relationships between subjects. M
(numpy.ndarray, optional): The matrix of attributes, which is not typically required.

Defaults to None.

nP (int): The number of permutations to generate. CMC (bool, optional): A flag indicating
whether to use the Conditional Monte Carlo method (CMC).

3.2. Modules 61

GLHMM, Release 0.0.1

Defaults to False.

EE (bool, optional): A flag indicating whether to assume exchangeable errors, which
allows permutation.

Defaults to True.

glhmm.statistics.pval_cluster_based_correction(test_statistics, pval, alpha=0.05)
Perform cluster-based correction on test statistics using the output from permutation testing. The function cor-
rects p-values by using the test statistics and p-values obtained from permutation testing. It converts the test
statistics into z-based statistics, allowing to threshold and identify cluster sizes. The p-value map from permuta-
tion testing results is then thresholded using the cluster size derived from z-based statistics.

Parameters

• test_statistics ((numpy.ndarray)) – 2D or 3D array of test statistics. 2D if you have
applied permutation testing using “regression”.

• pval ((numpy.ndarray)) – 2D or 1D array of p-values obtained from permutation testing.
1D if you have applied permutation testing using “regression”.

• alpha ((float, optional)) – Significance level for cluster-based correction (De-
faults=0.05).

Returns
p_values – Corrected p-values after cluster-based correction.

Return type
(numpy.ndarray)

glhmm.statistics.pval_correction(pval, method='fdr_bh', alpha=0.05, include_nan=True,
nan_diagonal=False)

Adjusts p-values for multiple testing.

Parameters:

pval (numpy.ndarray): numpy array of p-values. method (str, optional): method used for FDR cor-
rection (default: ‘fdr_bh).

bonferroni : one-step correction sidak : one-step correction holm-sidak : step down method
using Sidak adjustments holm : step-down method using Bonferroni adjustments simes-
hochberg : step-up method (independent) hommel : closed method based on Simes tests
(non-negative) fdr_bh : Benjamini/Hochberg (non-negative) fdr_by : Benjamini/Yekutieli
(negative) fdr_tsbh : two stage fdr correction (non-negative) fdr_tsbky : two stage fdr cor-
rection (non-negative)

alpha (float, optional): Significance level (default: 0.05). include_nan: Include NaN values during
the correction of p-values if True. Exclude NaN values if False (default: True). nan_diagonal: Add
NaN values to the diagonal if True (default: False).

62 Chapter 3. Documentation

GLHMM, Release 0.0.1

Returns:

pval_corrected (numpy.ndarray): numpy array of corrected p-values. significant (numpy.ndarray):
numpy array of boolean values indicating significant p-values.

glhmm.statistics.reconstruct_concatenated_design(D_con, D_sessions=None, n_timepoints=None,
n_trials=None, n_channels=None)

Reconstructs the concatenated design matrix to the original session variables.

Parameters:

D_con (numpy.ndarray): Concatenated design matrix. D_sessions (numpy.ndarray, optional): Orig-
inal design matrix for each session. n_timepoints (int, optional): Number of timepoints per trial.
n_trials (int, optional): Number of trials per session. n_channels (int, optional): Number of channels.

Returns:

D_reconstruct (numpy.ndarray): Reconstructed design matrix for each session.

glhmm.statistics.remove_nan_values(D_data, R_data, t, n_T , method)
Remove rows with NaN values from input data arrays.

Parameters

• D_data (numpy.ndarray) – Input data array containing features.

• R_data (numpy.ndarray) – Input data array containing response values.

• t (int) – Timepoint of the data

• n_T (int) – Total number of timepoint of the data

Returns

• D_data (numpy.ndarray) – Cleaned feature data (D_data) with NaN values removed.

• R_data (numpy.ndarray) – Cleaned response data (R_data) with NaN values removed.

glhmm.statistics.surrogate_state_time(perm, viterbi_path, n_states)
Generates surrogate state-time matrix based on a given Viterbi path.

Parameters:

perm (int): The permutation number. viterbi_path (numpy.ndarray): 1D array or 2D matrix containing
the Viterbi path. n_states (int): The number of states

3.2. Modules 63

GLHMM, Release 0.0.1

Returns:

viterbi_path_surrogate (numpy.ndarray): A 1D array representing the surrogate Viterbi path

glhmm.statistics.surrogate_viterbi_path(viterbi_path, n_states)
Generate surrogate Viterbi path based on state-time matrix.

Parameters:

viterbi_path (numpy.ndarray): 1D array or 2D matrix containing the Viterbi path. n_states (int):
Number of states in the hidden Markov model.

Returns:

viterbi_path_surrogate (numpy.ndarray): Surrogate Viterbi path as a 1D array representing
the state indices.

The number of states in the array varies from 1 to n_states

glhmm.statistics.test_across_sessions_within_subject(D_data, R_data, idx_data,
method='regression', Nperm=0,
confounds=None, verbose=True,
test_statistics_option=False,
FWER_correction=False,
identify_categories=False, category_lim=10,
test_combination=False)

This function performs statistical tests between a independent variable (D_data) and the dependent-variable
(R_data) using permutation testing. The permutation testing is performed across sessions within the same sub-
ject, while keeping the trial order the same. This procedure is particularly valuable for investigating the effects
of long-term treatments or monitoring changes in brain responses across sessions over time.

Three options are available to customize the statistical analysis to a particular research questions:

• ‘regression’: Perform permutation testing using regression analysis.

• ‘correlation’: Conduct permutation testing with correlation analysis.

• ‘cca’: Apply permutation testing using canonical correlation analysis.

Parameters:

D_data (numpy.ndarray): Input data array of shape that can be either a 2D array or a 3D
array.

For 2D array, it got a shape of (n, p), where n_ST represent the number of subjects, and each
column represents a feature (e.g., brain region). For a 3D array,it got a shape (T, n, p), where the
first dimension represents timepoints, the second dimension represents the number of trials, and
the third dimension represents features/predictors.

R_data (numpy.ndarray): The dependent-variable can be either a 2D array or a 3D array.
For 2D array, it got a shape of (n, q), where n represent the number of trials, and q represents
the outcome/dependent variable For a 3D array,it got a shape (T, n, q), where the first dimen-
sion represents timepoints, the second dimension represents the number of trials, and the third
dimension represents a dependent variable

64 Chapter 3. Documentation

GLHMM, Release 0.0.1

idx_data (numpy.ndarray): The indices for each trial within the session. It should be a 2D
array where each row

represents the start and end index for a trial.

method (str, optional): The statistical method to be used for the permutation test. Valid
options are

“regression”, “univariate”, or “cca”. (default: “regression”). Note: “cca” stands for Canonical
Correlation Analysis

Nperm (int): Number of permutations to perform (default: 1000). confounds (numpy.ndarray or
None, optional):

The confounding variables to be regressed out from the input data (D_data). If provided, the
regression analysis is performed to remove the confounding effects. (default: None):

verbose (bool, optional):
If True, display progress messages and prints. If False, suppress messages.

test_statistics_option (bool, optional):
If True, the function will return the test statistics for each permutation. (default: False)

FWER_correction (bool, optional):
Specify whether to perform family-wise error rate (FWER) correction for multiple compar-
isons using the MaxT method(default: False). Note: FWER_correction is not necessary if
pval_correction is applied later for multiple comparison p-value correction.

identify_categories
[bool or list or numpy.ndarray, optional, default=True] If True, automatically identify categorical
columns. If list or ndarray, use the provided list of column indices.

category_lim
[int or None, optional, default=None] Maximum allowed number of categories for F-test. Acts
as a safety measure for columns with integer values, like age, which may be mistakenly identified
as multiple categories.

test_combination: Calculates geometric means of p-values using permutation testing (default:
False). Valid options are:

• True (bool): Return a single geometric mean per time point.

• “across_rows” (str): Calculate geometric means for each row.

• “across_columns” (str): Calculate geometric means for each column.

Returns:

result (dict): A dictionary containing the following keys. Depending on the
test_statistics_option and method, it can return the p-values,

correlation coefficients, test statisticss. ‘pval’: P-values for the test with shapes based on the
method:

• method==”Regression”: (T, p)

• method==”univariate”: (T, p, q)

• method==”cca”: (T, 1)

‘test_statistics’: test statistics is the permutation distribution if test_statistics_option is
True, else None.

• method==”Regression”: (T, Nperm, p)

3.2. Modules 65

GLHMM, Release 0.0.1

• method==”univariate”: (T, Nperm, p, q)

• method==”cca”: (T, Nperm, 1)

‘base_statistics’: Correlation coefficients for the test with shape (T, p, q) if
method==”univariate”, else None. ‘test_type’: the type of test, which is the name of the
function ‘method’: the method used for analysis Valid options are

“regression”, “univariate”, or “cca”, “one_vs_rest” and “state_pairs” (default: “regres-
sion”).

‘max_correction’: Specifies if FWER has been applied using MaxT, can either output True or
False. ‘Nperm’ :The number of permutations that has been performed.

Note: The function automatically determines whether permutation testing is performed per timepoint for each
subject or for the whole data based on the dimensionality of D_data. The function assumes that the number of
rows in D_data and R_data are equal

glhmm.statistics.test_across_subjects(D_data, R_data, method='regression', Nperm=0,
confounds=None, dict_family=None, verbose=True,
test_statistics_option=False, FWER_correction=False,
identify_categories=False, category_lim=10,
test_combination=False)

This function performs statistical tests between a independent variable (D_data) and the dependent-variable
(R_data) using permutation testing. The permutation testing is performed across across different subjects and
it is possible to take family structure into account. This procedure is particularly valuable for investigating the
differences between subjects in one’s study.

Three options are available to customize the statistical analysis to a particular research questions:

• “regression”: Perform permutation testing using regression analysis.

• “univariate”: Conduct permutation testing with correlation analysis.

• “cca”: Apply permutation testing using canonical correlation analysis.

Parameters:

D_data (numpy.ndarray): Input data array of shape that can be either a 2D array or a 3D array.
For 2D, the data is represented as a (n, p) matrix, where n represents the number of subjects, and p represents
the number of predictors. For 3D array, it has a shape (T, n, q), where the first dimension represents
timepoints, the second dimension represents the number of subjects, and the third dimension represents
features. For 3D, permutation testing is performed per timepoint for each subject.

R_data (numpy.ndarray): The dependent variable can be either a 2D array or a 3D array.
For 2D array, it has a shape of (n, q), where n represents the number of subjects, and q represents the
outcome of the dependent variable. For 3D array, it has a shape (T, n, q), where the first dimension represents
timepoints, the second dimension represents the number of subjects, and the third dimension represents a
dependent variable. For 3D, permutation testing is performed per timepoint for each subject.

method (str, optional): The statistical method to be used for the permutation test. Valid options are
“regression”, “univariate”, or “cca”. (default: “regression”). Note: “cca” stands for Canonical Correlation
Analysis

Nperm (int): Number of permutations to perform (default: 1000). confounds (numpy.ndarray or None, optional):

66 Chapter 3. Documentation

GLHMM, Release 0.0.1

The confounding variables to be regressed out from the input data (D_data). If provided, the regres-
sion analysis is performed to remove the confounding effects. (default: None)

dict_family (dict):

Dictionary containing family structure information.

• file_location (str): The file location of the family structure data in CSV format.

• M (numpy.ndarray, optional): The matrix of attributes, which is not typically required.
Defaults to None.

• CMC (bool, optional): A flag indicating whether to use the Conditional Monte Carlo
method (CMC).

Defaults to False.

• EE (bool, optional): A flag indicating whether to assume exchangeable errors, which allows
permutation.

Defaults to True. Other options are not available.

verbose (bool, optional):
If True, display progress messages. If False, suppress progress messages.

test_statistics_option (bool, optional):
If True, the function will return the test statistics for each permutation. (default: False)

FWER_correction (bool, optional):
Specify whether to perform family-wise error rate (FWER) correction using the MaxT method (default:
False) Note: FWER_correction is not necessary if pval_correction is applied later for multiple comparison
p-value correction.

identify_categories
[bool or list or numpy.ndarray, optional, default=True] If True, automatically identify categorical columns.
If list or ndarray, use the provided list of column indices.

category_lim
[int or None, optional, default=10] Maximum allowed number of categories for F-test. Acts as a safety
measure for columns with integer values, like age, which may be mistakenly identified as multiple cate-
gories.

test_combination: Calculates geometric means of p-values using permutation testing (default: False).
In the context of p-values from permutation testing, calculating geometric means can be useful for summa-
rizing results across multiple tests to get insights into the overall statistical significance across experimental
conditions. Valid options are:

• True (bool): Return a single geometric mean value.

• “across_rows” (str): Calculates geometric means aggregated across rows.

• “across_columns” (str): Calculates geometric means aggregated across columns.

3.2. Modules 67

GLHMM, Release 0.0.1

Returns:

result (dict): A dictionary containing the following keys. Depending on the test_statistics_option and
method, it can return the p-values,

correlation coefficients, test statisticss. ‘pval’: P-values for the test with shapes based on the method:

• method==”Regression”: (T, p)

• method==”univariate”: (T, p, q)

• method==”cca”: (T, 1)

‘test_statistics’: test statistics is the permutation distribution if test_statistics_option is True, else
None.

• method==”Regression”: (T, Nperm, p)

• method==”univariate”: (T, Nperm, p, q)

• method==”cca”: (T, Nperm, 1)

‘base_statistics’: Correlation coefficients for the test with shape (T, p, q) if method==”univariate”, else
None. ‘test_type’: the type of test, which is the name of the function ‘method’: the method used for
analysis Valid options are

“regression”, “univariate”, or “cca”, “one_vs_rest” and “state_pairs” (default: “regression”).

‘max_correction’: Specifies if FWER has been applied using MaxT, can either output True or False. ‘per-
formed_tests’: A dictionary that marks the columns in the test_statistics or p-value matrix corresponding
to the (q dimension) where t-tests or F-tests have been performed. ‘Nperm’ :The number of permutations
that has been performed.

Note: The function automatically determines whether permutation testing is performed per timepoint for each
subject or for the whole data based on the dimensionality of D_data. The function assumes that the number of
rows in D_data and R_data are equal

glhmm.statistics.test_across_trials_within_session(D_data, R_data, idx_data, method='regression',
Nperm=0, confounds=None,
trial_timepoints=None, verbose=True,
test_statistics_option=False,
FWER_correction=False,
identify_categories=False, category_lim=10,
test_combination=False)

This function performs statistical tests between a independent variable (D_data) and the dependent-variable
(R_data) using permutation testing. The permutation testing is performed across different trials within a session
using permutation testing This procedure is particularly valuable for investigating the differences between trials
in one or more sessions. An example could be if we want to test if any learning is happening during a session
that might speed up times.

Three options are available to customize the statistical analysis to a particular research questions:

• ‘regression’: Perform permutation testing using regression analysis.

• ‘correlation’: Conduct permutation testing with correlation analysis.

• ‘cca’: Apply permutation testing using canonical correlation analysis.

68 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

D_data (numpy.ndarray): Input data array of shape that can be either a 2D array or a 3D
array.

For 2D array, it got a shape of (n, p), where n represent the number of trials, and p represents the
number of predictors (e.g., brain region) For a 3D array,it got a shape (T, n, p), where the first
dimension represents timepoints, the second dimension represents the number of trials, and the
third dimension represents features/predictors. In the latter case, permutation testing is performed
per timepoint for each subject.

R_data (numpy.ndarray): The dependent-variable can be either a 2D array or a 3D array.
For 2D array, it got a shape of (n, q), where n represent the number of trials, and q represents
the outcome/dependent variable For a 3D array,it got a shape (T, n, q), where the first dimen-
sion represents timepoints, the second dimension represents the number of trials, and the third
dimension represents a dependent variable

idx_data (numpy.ndarray): The indices for each trial within the session. It should be a 2D
array where each row

represents the start and end index for a trial.

method (str, optional): The statistical method to be used for the permutation test. Valid
options are

“regression”, “univariate”, or “cca”. (default: “regression”). Note: “cca” stands for Canonical
Correlation Analysis

Nperm (int): Number of permutations to perform (default: 1000). confounds (numpy.ndarray or
None, optional):

The confounding variables to be regressed out from the input data (D_data). If provided, the
regression analysis is performed to remove the confounding effects. (default: None):

trial_timepoints (int): Number of timepoints for each trial (default: None) verbose (bool, optional):

If True, display progress messages. If False, suppress progress messages.

test_statistics_option (bool, optional):
If True, the function will return the test statistics for each permutation. (default: False)

FWER_correction (bool, optional):
Specify whether to perform family-wise error rate (FWER) correction for multiple compar-
isons using the MaxT method(default: False). Note: FWER_correction is not necessary if
pval_correction is applied later for multiple comparison p-value correction.

identify_categories
[bool or list or numpy.ndarray, optional, default=True] If True, automatically identify categorical
columns. If list or ndarray, use the provided list of column indices.

category_lim
[int or None, optional, default=None] Maximum allowed number of categories for F-test. Acts
as a safety measure for columns with integer values, like age, which may be mistakenly identified
as multiple categories.

test_combination: Calculates geometric means of p-values using permutation testing (default:
False). Valid options are:

• True (bool): Return a single geometric mean per time point.

• “across_rows” (str): Calculate geometric means for each row.

• “across_columns” (str): Calculate geometric means for each column.

3.2. Modules 69

GLHMM, Release 0.0.1

Returns:

result (dict): A dictionary containing the following keys. Depending on the test_statistics_option and
method, it can return the p-values,

correlation coefficients, test statisticss. ‘pval’: P-values for the test with shapes based on the method:

• method==”Regression”: (T, p)

• method==”univariate”: (T, p, q)

• method==”cca”: (T, 1)

‘test_statistics’: test statistics is the permutation distribution if test_statistics_option is True, else
None.

• method==”Regression”: (T, Nperm, p)

• method==”univariate”: (T, Nperm, p, q)

• method==”cca”: (T, Nperm, 1)

‘base_statistics’: Correlation coefficients for the test with shape (T, p, q) if method==”univariate”, else
None. ‘test_type’: the type of test, which is the name of the function ‘method’: the method used for
analysis Valid options are

“regression”, “univariate”, or “cca”, “one_vs_rest” and “state_pairs” (default: “regression”).

‘max_correction’: Specifies if FWER has been applied using MaxT, can either output True or False.
‘Nperm’ :The number of permutations that has been performed.

Note: The function automatically determines whether permutation testing is performed per timepoint for each
subject or for the whole data based on the dimensionality of D_data. The function assumes that the number of
rows in D_data and R_data are equal

glhmm.statistics.test_across_visits(input_data, vpath_data, n_states, method='regression', Nperm=0,
verbose=True, confounds=None, test_statistics_option=False,
pairwise_statistic='mean', FWER_correction=False,
category_lim=None, identify_categories=False)

glhmm.statistics.test_statistics_calculations(Din, Rin, perm, test_statistics, proj, method,
category_columns=[], test_combination=False)

Calculates the test_statistics array and pval_perms array based on the given data and method.

Parameters:

Din (numpy.ndarray): The data array. Rin (numpy.ndarray): The dependent variable. perm (int):
The permutation index. pval_perms (numpy.ndarray): The p-value permutation array. test_statistics
(numpy.ndarray): The permutation array. proj (numpy.ndarray or None): The projection matrix (None
for correlation methods). method (str): The method used for permutation testing.

70 Chapter 3. Documentation

GLHMM, Release 0.0.1

Returns:

test_statistics (numpy.ndarray): Updated test_statistics array. pval_perms (numpy.ndarray): Updated
pval_perms array.

glhmm.statistics.validate_condition(condition, error_message)
Validates a given condition and raises a ValueError with the specified error message if the condition is not met.

Parameters:

condition (bool): The condition to check. error_message (str): The error message to raise if the
condition is not met.

glhmm.statistics.viterbi_path_to_stc(viterbi_path, n_states)
Convert Viterbi path to state-time matrix.

Parameters:

viterbi_path (numpy.ndarray): 1D array or 2D matrix containing the Viterbi path. n_states (int):
Number of states in the hidden Markov model.

Returns:

stc (numpy.ndarray): State-time matrix where each row represents a time point and each column
represents a state.

3.2.9 glhmm.palm_functions

glhmm.palm_functions.hcp2block(tmp, blocksfile=None, dz2sib=False, ids=None)
Convert HCP-style twin data into block structure.

Parameters:

file (str): Path to the input CSV file containing twin data. blocksfile (str, optional): Path to save the
resulting blocks as a CSV file. dz2sib (bool, optional): If True, handle non-monozygotic twins as
siblings. Default is False. ids (list or array-like, optional): List of subject IDs to include. Default is
None.

Returns:

tuple: A tuple containing three elements:
tab (numpy.ndarray): A modified table of twin data. B (numpy.ndarray): Block structure repre-
senting relationships between subjects. famtype (numpy.ndarray): An array indicating the type
of each family.

3.2. Modules 71

GLHMM, Release 0.0.1

glhmm.palm_functions.is_single_value(variable)
Check if an array contains a singlevalue.

This function checks if an array contains a singlevalue.

Parameters: arr (numpy.ndarray or list): The array to be checked.

Returns: bool: True if the array contains a single value, False otherwise.

glhmm.palm_functions.lmaxflipnode(Ptree, ns)
Calculate the logarithm of the maximum number of sign-flips within a palm tree node.

This function calculates the logarithm of the maximum number of sign-flips within a palm tree node.

Parameters: Ptree (list or numpy.ndarray): The palm tree structure. ns (int): The current logarithm of sign-flips
(initialized to 0).

Returns: int: The logarithm of the maximum number of sign-flips within the node.

glhmm.palm_functions.lmaxpermnode(Ptree, n_p)
Calculate the logarithm of the maximum number of permutations within a palm tree node.

This function calculates the logarithm of the maximum number of permutations within a palm tree node.

Parameters: Ptree (list or numpy.ndarray): The palm tree structure. n_p (int): The current logarithm of permu-
tations (initialized to 0).

Returns: int: The logarithm of the maximum number of permutations within the node.

glhmm.palm_functions.lseq2np(S)
Calculate the logarithm of the number of permutations for a given sequence.

This function calculates the logarithm of the number of permutations for a given sequence.

Parameters: S (numpy.ndarray): The input sequence.

Returns: int: The logarithm of the number of permutations for the sequence.

glhmm.palm_functions.maketree(B, M, O, wholeblock, nosf)
Recursively construct a palm tree structure from input matrices.

This function builds a palm tree structure by recursively processing input matrices representing nodes in the palm
tree.

Parameters: B (numpy.ndarray): The input matrix where each row represents a node in the palm tree (Block
definitions). M (numpy.ndarray): The corresponding Design-matrix, which associates nodes in B with additional
data. O (numpy.ndarray): Observation indices wholeblock (bool): A boolean indicating if the entire block is
positive based on the first element of B. nosf (bool): A boolean indicating if there are no signflip this level

Returns: tuple: A tuple containing:

• S (numpy.ndarray or float): The palm tree structure for this branch.

• Ptree (numpy.ndarray or list): The palm tree structure

glhmm.palm_functions.maxflipnode(Ptree, ns)
Calculate the maximum number of sign-flips within a palm tree node.

This function recursively calculates the maximum number of sign-flips within a palm tree node.

Parameters: Ptree (list or numpy.ndarray): The palm tree structure. ns (int): The current number of sign-flips
(initialized to 1).

Returns: int: The maximum number of sign-flips within the node.

72 Chapter 3. Documentation

GLHMM, Release 0.0.1

glhmm.palm_functions.maxpermnode(Ptree, np)
Calculate the maximum number of permutations within a palm tree node.

This function recursively calculates the maximum number of permutations within a palm tree node.

Parameters: Ptree (list or numpy.ndarray): The palm tree structure. np (int): The current number of permutations
(initialized to 1).

Returns: int: The maximum number of permutations within the node.

glhmm.palm_functions.palm_factorial(N=101)
Calculate logarithmically scaled factorials up to a given number.

This function precomputes logarithmically scaled factorials up to a specified number.

Parameters: N (int, optional): The maximum number for which to precompute factorials (defaults to 101).

Returns: numpy.ndarray: An array of precomputed logarithmically scaled factorials.

glhmm.palm_functions.palm_maxshuf(Ptree, stype='perms', uselog=False)
Calculate the maximum number of shufflings (permutations or sign-flips) for a given palm tree structure.

Parameters: Ptree (list or numpy.ndarray): The palm tree structure. stype (str, optional): The type of shuffling to
calculate (‘perms’ for permutations by default). uselog (bool, optional): A flag indicating whether to calculate
using logarithmic values (defaults to False).

Returns: int: The maximum number of shufflings (permutations or sign-flips) based on the specified criteria.

glhmm.palm_functions.palm_permtree(Ptree, nP, CMC=False, maxP=None)
Generate permutations of a given palm tree structure.

This function generates permutations of a palm tree structure represented by Ptree. Permutations are created by
shuffling the branches of the palm tree. The number of permutations is controlled by the ‘nP’ parameter.

Parameters:

Ptree (list or numpy.ndarray): The palm tree structure to be permuted. nP (int): The number of permutations to
generate. CMC (bool, optional): Whether to use Conditional Monte Carlo (CMC) method for permutation.

Defaults to False.

maxP (int, optional): The maximum number of permutations allowed. If not provided, it is calculated automati-
cally.

Returns:

numpy.ndarray: An array representing the permutations. Each row corresponds to a permutation, with
the first

column always representing the identity permutation.

Note: - If ‘CMC’ is False and ‘nP’ is greater than ‘maxP’ / 2, a warning message is displayed, as it may take a

considerable amount of time to find non-repeated permutations.

• The function utilizes the ‘pickperm’ and ‘randomperm’ helper functions for the permutation process.

glhmm.palm_functions.palm_quickperms(EB, M=None, nP=1000, CMC=False, EE=True)
Generate a set of permutations for a given input matrix using palm methods.

3.2. Modules 73

GLHMM, Release 0.0.1

Parameters:

EB (numpy.ndarray): Block structure representing relationships between subjects. M (numpy.ndarray, optional):
The matrix of attributes, which is not typically required.

Defaults to None.

nP (int): The number of permutations to generate. CMC (bool, optional): A flag indicating whether to use the
Conditional Monte Carlo method (CMC).

Defaults to False.

EE (bool, optional): A flag indicating whether to assume exchangeable errors, which allows permutation.
Defaults to True.

Returns:

list: A list containing the generated permutations.

glhmm.palm_functions.palm_reindex(B, meth='fixleaves')
Reindex a 2D numpy array using different procedures while preserving block structure.

This function reorders the elements of a 2D numpy array B by applying one of several reindexing methods. The
primary goal of reindexing is to assign new values to elements in such a way that they are organized in a desired
order or structure.

Parameters: B (numpy.ndarray): The 2D input array to be reindexed. meth (str, optional): The reindexing method
to be applied. It can take one of the following values:

• ‘fixleaves’: This method reindexes the input array by preserving the order of unique values in the first
column and recursively reindexes the remaining columns. It is well-suited for hierarchical data where the
first column represents levels or leaves.

• ‘continuous’: This method reindexes the input array by assigning new values to elements in a continuous,
non-overlapping manner within each column. It is useful for continuous data or when preserving the order
of unique values is not a requirement.

• ‘restart’: This method reindexes the input array by restarting the numbering from 1 for each block of unique
values in the first column. It is suitable for data that naturally breaks into distinct segments or blocks.

• ‘mixed’: This method combines both the ‘fixleaves’ and ‘continuous’ reindexing methods. It reindexes the
first columns using ‘fixleaves’ and the remaining columns using ‘continuous’, creating a mixed reindexing
scheme.

Returns: numpy.ndarray: The reindexed array, preserving the block structure based on the chosen method.

Raises: ValueError: If the meth parameter is not one of the valid reindexing methods.

glhmm.palm_functions.palm_shuftree(Ptree, nP, CMC=False, EE=True)
Generate a set of shufflings (permutations or sign-flips) for a given palm tree structure.

74 Chapter 3. Documentation

GLHMM, Release 0.0.1

Parameters:

Ptree (list): The palm tree structure. nP (int): The number of permutations to generate.

CMC (bool, optional): A flag indicating whether to use the Conditional Monte Carlo method (CMC).
Defaults to False.

EE (bool, optional): A flag indicating whether to assume exchangeable errors, which allows permutation.
Defaults to True.

Returns:

list: A list containing the generated shufflings (permutations).

glhmm.palm_functions.palm_tree(B, M=None)
Construct a palm tree structure from an input matrix B and an optional design-matrix M.

The palm tree represents a hierarchical structure where each node can have three branches: - The left branch
contains data elements. - The middle branch represents special features (if any). - The right branch contains
nested structures.

Parameters: B (numpy.ndarray): The input matrix where each row represents the Multi-level block definitions
of the PALM tree. M (numpy.ndarray, optional): An optional Design-matrix that associates each node in B with
additional data.

Defaults to None.

Returns: list: A list containing three elements:

• Ptree[0] (numpy.ndarray or list): The left branch of the palm tree, containing data elements.

• Ptree[1] (numpy.ndarray, list, or empty list): The middle branch of the palm tree, representing
special features (if any).

• Ptree[2] (numpy.ndarray or list): The right branch of the palm tree, containing nested structures.

glhmm.palm_functions.pickperm(Ptree, P)
Extract a permutation from a palm tree structure.

This function extracts a permutation from a given palm tree structure. It does not perform the permutation but
returns the indices representing the already permuted tree.

Parameters:

Ptree (list or numpy.ndarray): The palm tree structure. P (numpy.ndarray): The current state of the permutation.

Returns:

numpy.ndarray: An array of indices representing the permutation of the palm tree structure.

glhmm.palm_functions.randomperm(Ptree_perm)

Create a random permutation of a palm tree structure.

This function generates a random permutation of a given palm tree structure by shuffling its branches.

3.2. Modules 75

GLHMM, Release 0.0.1

Parameters:

Ptree_perm (list or numpy.ndarray): The palm tree structure to be permuted.

Returns:

list: The randomly permuted palm tree structure.

glhmm.palm_functions.renumber(B)
Renumber the elements in a 2D numpy array B, preserving their order within distinct blocks.

This function renumbers the elements in the input array B based on distinct values in its first column. Each distinct
value represents a block, and the elements within each block are renumbered sequentially, while preserving the
relative order of elements within each block.

Parameters: B (numpy.ndarray): The 2D input array to be renumbered.

Returns: tuple: A tuple containing:

• Br (numpy.ndarray): The renumbered array, where elements are renumbered within blocks.

• addcol (bool): A boolean indicating whether a column was added during renumbering.

glhmm.palm_functions.seq2np(S)
Calculate the number of permutations for a given sequence.

This function calculates the number of permutations for a given sequence.

Parameters: S (numpy.ndarray): The input sequence.

Returns: int: The number of permutations for the sequence.

HMM
Hidden Markov Model.

n_parcels
The number of brain parcels/regions/seeds.

n_samples
The number of total timepoints.

n_sessions
The number of total sessions.

n_states
The number of hidden states in the HMM.

state mixing
Refers to whether the model is capable of capturing within-session state modulations, rather than assigning the
entire sessions (or the largest part of them) to a single state. For more information, visit Ahrends et al. (2022)
article here.

76 Chapter 3. Documentation

https://pubmed.ncbi.nlm.nih.gov/35217207/

PYTHON MODULE INDEX

g
glhmm.auxiliary, 24
glhmm.glhmm, 10
glhmm.graphics, 34
glhmm.io, 20
glhmm.palm_functions, 71
glhmm.prediction, 41
glhmm.preproc, 21
glhmm.statistics, 53
glhmm.utils, 30

77

GLHMM, Release 0.0.1

78 Python Module Index

INDEX

A
apply_pca() (in module glhmm.preproc), 21
approximate_Xi() (in module glhmm.auxiliary), 25

B
blue_colormap() (in module glhmm.graphics), 34
build_data_autoregressive() (in module

glhmm.preproc), 21
build_data_partial_connectivity() (in module

glhmm.preproc), 22
build_data_tde() (in module glhmm.preproc), 22

C
calculate_baseline_difference() (in module

glhmm.statistics), 53
calculate_geometric_pval() (in module

glhmm.statistics), 53
calculate_nan_correlation_matrix() (in module

glhmm.statistics), 53
calculate_nan_f_test() (in module

glhmm.statistics), 54
calculate_nan_regression() (in module

glhmm.statistics), 54
calculate_nan_regression_f_test() (in module

glhmm.statistics), 54
calculate_nan_t_test() (in module

glhmm.statistics), 55
calculate_statepair_difference() (in module

glhmm.statistics), 55
classify_phenotype() (in module glhmm.prediction),

41
compute_alpha_beta() (in module glhmm.auxiliary),

25
compute_gradient() (in module glhmm.prediction), 42
compute_qstar() (in module glhmm.auxiliary), 26
create_cmap_alpha() (in module glhmm.graphics), 34
custom_colormap() (in module glhmm.graphics), 34

D
decode() (glhmm.glhmm.glhmm method), 11
deconfound() (in module glhmm.prediction), 43
deconfound_values() (in module glhmm.statistics), 55

detect_significant_intervals() (in module
glhmm.statistics), 56

dirichlet_kl() (in module glhmm.auxiliary), 26
dual_estimate() (glhmm.glhmm.glhmm method), 12

G
Gamma_entropy() (in module glhmm.auxiliary), 24
Gamma_indices_to_Xi_indices() (in module

glhmm.auxiliary), 25
gamma_kl() (in module glhmm.auxiliary), 26
gauss1d_kl() (in module glhmm.auxiliary), 27
gauss_kl() (in module glhmm.auxiliary), 27
generate_vpath_1D() (in module glhmm.statistics), 56
get_active_K() (glhmm.glhmm.glhmm method), 12
get_beta() (glhmm.glhmm.glhmm method), 12
get_betas() (glhmm.glhmm.glhmm method), 13
get_concatenate_sessions() (in module

glhmm.statistics), 56
get_covariance_matrix() (glhmm.glhmm.glhmm

method), 13
get_fe() (glhmm.glhmm.glhmm method), 14
get_FO() (in module glhmm.utils), 30
get_FO_entropy() (in module glhmm.utils), 30
get_groups() (in module glhmm.prediction), 43
get_indices_array() (in module glhmm.statistics), 57
get_indices_from_list() (in module

glhmm.statistics), 57
get_input_shape() (in module glhmm.statistics), 57
get_inverse_covariance_matrix()

(glhmm.glhmm.glhmm method), 15
get_life_times() (in module glhmm.utils), 30
get_maxFO() (in module glhmm.utils), 31
get_mean() (glhmm.glhmm.glhmm method), 15
get_means() (glhmm.glhmm.glhmm method), 16
get_pval() (in module glhmm.statistics), 58
get_r2() (glhmm.glhmm.glhmm method), 16
get_session_indices() (in module glhmm.statistics),

58
get_state_evoked_response() (in module

glhmm.utils), 32
get_state_evoked_response_entropy() (in module

glhmm.utils), 32

79

GLHMM, Release 0.0.1

get_state_onsets() (in module glhmm.utils), 33
get_summ_features() (in module glhmm.prediction),

43
get_switching_rate() (in module glhmm.utils), 33
get_T() (in module glhmm.auxiliary), 28
get_timestamp_indices() (in module

glhmm.statistics), 58
get_visits() (in module glhmm.utils), 34
glhmm (class in glhmm.glhmm), 10
glhmm.auxiliary

module, 24
glhmm.glhmm

module, 10
glhmm.graphics

module, 34
glhmm.io

module, 20
glhmm.palm_functions

module, 71
glhmm.prediction

module, 41
glhmm.preproc

module, 21
glhmm.statistics

module, 53
glhmm.utils

module, 30

H
hcp2block() (in module glhmm.palm_functions), 71
HMM, 76
hmm_kernel() (in module glhmm.prediction), 44

I
identify_coloumns_for_t_and_f_tests() (in mod-

ule glhmm.statistics), 59
initialize_arrays() (in module glhmm.statistics), 59
initialize_permutation_matrices() (in module

glhmm.statistics), 59
interpolate_colormap() (in module

glhmm.graphics), 34
is_single_value() (in module

glhmm.palm_functions), 71

J
jls_extract_def() (in module glhmm.auxiliary), 28

L
lmaxflipnode() (in module glhmm.palm_functions), 72
lmaxpermnode() (in module glhmm.palm_functions), 72
load_files() (in module glhmm.io), 20
load_files() (in module glhmm.preproc), 23
load_hmm() (in module glhmm.io), 20

load_statistics() (in module glhmm.io), 20
loglikelihood() (glhmm.glhmm.glhmm method), 17
lseq2np() (in module glhmm.palm_functions), 72

M
make_indices_from_T() (in module glhmm.auxiliary),

28
maketree() (in module glhmm.palm_functions), 72
maxflipnode() (in module glhmm.palm_functions), 72
maxpermnode() (in module glhmm.palm_functions), 72
module

glhmm.auxiliary, 24
glhmm.glhmm, 10
glhmm.graphics, 34
glhmm.io, 20
glhmm.palm_functions, 71
glhmm.prediction, 41
glhmm.preproc, 21
glhmm.statistics, 53
glhmm.utils, 30

N
n_parcels, 76
n_samples, 76
n_sessions, 76
n_states, 76

P
padGamma() (in module glhmm.auxiliary), 29
palm_factorial() (in module glhmm.palm_functions),

73
palm_maxshuf() (in module glhmm.palm_functions), 73
palm_permtree() (in module glhmm.palm_functions),

73
palm_quickperms() (in module

glhmm.palm_functions), 73
palm_reindex() (in module glhmm.palm_functions), 74
palm_shuftree() (in module glhmm.palm_functions),

74
palm_tree() (in module glhmm.palm_functions), 75
permutation_matrix_across_subjects() (in mod-

ule glhmm.statistics), 60
permutation_matrix_across_trials_within_session()

(in module glhmm.statistics), 60
permutation_matrix_within_subject_across_sessions()

(in module glhmm.statistics), 60
permute_subject_trial_idx() (in module

glhmm.statistics), 61
pickperm() (in module glhmm.palm_functions), 75
plot_average_probability() (in module

glhmm.graphics), 35
plot_condition_difference() (in module

glhmm.graphics), 35

80 Index

GLHMM, Release 0.0.1

plot_correlation_matrix() (in module
glhmm.graphics), 36

plot_p_value_matrix() (in module glhmm.graphics),
36

plot_p_values_bar() (in module glhmm.graphics), 36
plot_p_values_over_time() (in module

glhmm.graphics), 37
plot_permutation_distribution() (in module

glhmm.graphics), 38
plot_scatter_with_labels() (in module

glhmm.graphics), 38
plot_vpath() (in module glhmm.graphics), 39
predict_phenotype() (in module glhmm.prediction),

45
preprocess_data() (in module glhmm.preproc), 23
process_family_structure() (in module

glhmm.statistics), 61
pval_cluster_based_correction() (in module

glhmm.statistics), 62
pval_correction() (in module glhmm.statistics), 62

R
randomperm() (in module glhmm.palm_functions), 75
read_flattened_hmm_mat() (in module glhmm.io), 20
reconfound() (in module glhmm.prediction), 46
reconstruct_concatenated_design() (in module

glhmm.statistics), 63
red_colormap() (in module glhmm.graphics), 39
remove_nan_values() (in module glhmm.statistics), 63
renumber() (in module glhmm.palm_functions), 76

S
sample() (glhmm.glhmm.glhmm method), 17
sample_Gamma() (glhmm.glhmm.glhmm method), 18
save_hmm() (in module glhmm.io), 20
save_statistics() (in module glhmm.io), 20
seq2np() (in module glhmm.palm_functions), 76
show_beta() (in module glhmm.graphics), 39
show_Gamma() (in module glhmm.graphics), 39
show_temporal_statistic() (in module

glhmm.graphics), 40
show_trans_prob_mat() (in module glhmm.graphics),

40
slice_matrix() (in module glhmm.auxiliary), 29
state mixing, 76
surrogate_state_time() (in module

glhmm.statistics), 63
surrogate_viterbi_path() (in module

glhmm.statistics), 64

T
test_across_sessions_within_subject() (in mod-

ule glhmm.statistics), 64

test_across_subjects() (in module
glhmm.statistics), 66

test_across_trials_within_session() (in module
glhmm.statistics), 68

test_across_visits() (in module glhmm.statistics),
70

test_classif() (in module glhmm.prediction), 46
test_pred() (in module glhmm.prediction), 48
test_statistics_calculations() (in module

glhmm.statistics), 70
train() (glhmm.glhmm.glhmm method), 18
train_classif() (in module glhmm.prediction), 49
train_pred() (in module glhmm.prediction), 51

V
validate_condition() (in module glhmm.statistics),

71
viterbi_path_to_stc() (in module glhmm.statistics),

71

W
wishart_kl() (in module glhmm.auxiliary), 29

Index 81

	Dependencies
	Installation
	Documentation
	Tutorial
	Installation
	Examples
	Relations to behaviour
	Prediction
	Statistics

	Modules
	glhmm.glhmm
	Attributes:
	Notes:
	Parameters:
	Returns:
	Raises:
	Parameters:
	Returns:
	Returns:
	Parameters:
	Returns:
	Raises:
	Returns:
	Raises:
	Parameters:
	Returns:
	Raises:
	Parameters:
	Returns:
	Raises:
	Notes:
	References:
	Parameters:
	Returns:
	Raises:
	Parameters:
	Returns:
	Raises:
	Returns:
	Raises:
	Parameters:
	Returns:
	Raises:
	Notes:
	Parameters:
	Returns:
	Raises:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Raises:

	glhmm.io
	glhmm.preproc
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:

	glhmm.auxiliary
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:

	glhmm.utils
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Notes:
	Parameters:
	Returns:
	Notes:
	References:
	Parameters:
	Returns:
	Raises:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Notes:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Notes:

	glhmm.graphics
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Example usage:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Notes:
	Parameters:
	Parameters:
	Parameters:
	Raises:
	Parameters:

	glhmm.prediction
	Parameters:
	Returns:
	Raises:
	Notes:
	Parameters:
	Returns:
	Raises:
	Notes:
	Parameter:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Raises:
	Notes:
	Parameters:
	Returns:
	Raises:
	Notes:
	Parameters:
	Returns:
	Raises:
	Parameters:
	Returns:
	Raises:
	Parameters:
	Returns:
	Raises:
	Notes:
	Parameters:
	Returns:
	Raises:
	Notes:

	glhmm.statistics
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Parameters:
	Returns:

	glhmm.palm_functions
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:

	Python Module Index
	Index

