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The GLHMM toolbox provides facilities to fit a variety of Hidden Markov models (HMM) based on the Gaussian distribution, which we generalise as the Gaussian-Linear HMM.
Crucially, the toolbox has a focus on finding associations at various levels between brain data (EEG, MEG, fMRI, ECoG, etc) and non-brain data, such as behavioural or physiological variables.


Important links


	Official source code repo: https://github.com/vidaurre/glhmm


	GLHMM documentation: https://glhmm.readthedocs.io/en/latest/index.html






Dependencies

The required dependencies to use glhmm are:


	Python >= 3.6


	NumPy


	numba


	scikit-learn


	scipy


	matplotlib


	seaborn






Installation


	To install from the repo, use the following command:




pip install glhmm







Documentation


Warning
The documentation of this library is under development
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Tutorial

GLHMM is a Python toolbox with a focus on neuroscience applications but broadly applicable to other domains as well. It implements a generalisation of various types of Hidden Markov Model (HMM). The toolbox can be applied on multiple data modalities, including fMRI, EEG, MEG, and ECoG, and offers a comprehensive set of HMMs tailored for different data types and analysis goals. The most important configurable aspect is the state distribution, which is parameterized
using a regression model. A non-exhaustive list of possible state distributions are:


	Gaussian: used in fMRI and other neuroimaging modalities.


	Wishart: employed in fMRI to specifically focus on changes in connectivity (covariance).


	Time-delay embedded: applied to whole-brain electrophysiological data (MEG or EEG), to capture spectral modulations in the data.


	Autoregressive: provides a more detailed spectral description for electrophysiological data with a limited number of channels.


	Regression-based decoding: describes the dynamic relationship between brain activity and ongoing stimuli.


	Regression-based encoding: emphasizes the spatial interpretation of brain activity in relation to stimuli.





Installation

If you have not done so, install the repo using:


[1]:





pip install glhmm













Requirement already satisfied: glhmm in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (0.2.3)
Requirement already satisfied: scipy in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (1.12.0)
Requirement already satisfied: numpy in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (1.26.4)
Requirement already satisfied: scikit-learn in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (1.4.1.post1)
Requirement already satisfied: matplotlib in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (3.8.3)
Requirement already satisfied: numba in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (0.59.1)
Requirement already satisfied: seaborn in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (0.13.2)
Requirement already satisfied: pandas in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (2.2.1)
Requirement already satisfied: igraph in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (0.11.4)
Requirement already satisfied: tqdm in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (4.66.2)
Requirement already satisfied: scikit-image in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (0.22.0)
Requirement already satisfied: statsmodels in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from glhmm) (0.14.1)












Requirement already satisfied: texttable>=1.6.2 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from igraph->glhmm) (1.7.0)
Requirement already satisfied: contourpy>=1.0.1 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm) (1.2.0)
Requirement already satisfied: cycler>=0.10 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm) (4.50.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm) (1.4.5)
Requirement already satisfied: packaging>=20.0 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm) (24.0)
Requirement already satisfied: pillow>=8 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm) (10.2.0)
Requirement already satisfied: pyparsing>=2.3.1 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm) (3.1.2)
Requirement already satisfied: python-dateutil>=2.7 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from matplotlib->glhmm) (2.9.0.post0)
Requirement already satisfied: llvmlite<0.43,>=0.42.0dev0 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from numba->glhmm) (0.42.0)












Requirement already satisfied: pytz>=2020.1 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from pandas->glhmm) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from pandas->glhmm) (2024.1)












Requirement already satisfied: networkx>=2.8 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-image->glhmm) (3.2.1)
Requirement already satisfied: imageio>=2.27 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-image->glhmm) (2.34.0)
Requirement already satisfied: tifffile>=2022.8.12 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-image->glhmm) (2024.2.12)
Requirement already satisfied: lazy_loader>=0.3 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-image->glhmm) (0.3)












Requirement already satisfied: joblib>=1.2.0 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-learn->glhmm) (1.3.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from scikit-learn->glhmm) (3.4.0)












Requirement already satisfied: patsy>=0.5.4 in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from statsmodels->glhmm) (0.5.6)












Requirement already satisfied: six in /home/docs/checkouts/readthedocs.org/user_builds/glhmm2/envs/latest/lib/python3.10/site-packages (from patsy>=0.5.4->statsmodels->glhmm) (1.16.0)












Note: you may need to restart the kernel to use updated packages.








Examples

Example data is provided in the example_data folder.

For an example of running a standard HMM using only one set of time series, see Example standard Gaussian HMM.

For an example of running a GLHMM using two sets of time series, see Example GLHMM.



Relations to behaviour

After estimating an HMM, we can explore its connections with an external variable not initially considered in the model. This could involve tasks like predicting age from subject-specific HMMs based on neuroimaging data or examining correlations with physiological factors. Our toolbox supports these types of analyses in the module called Prediction and Statistics


Prediction

This module enables the utilization of individual brain activity patterns for various applications, including predictions (such as cognitive abilities) and classifications (of subjects or clinical groups, for example). For a tutorial, see here



Statistics

This module provides powerful permutation testing analysis, which allows for statistical significance assessment without data distribution assumptions. It supports various test types, such as between- and within-session/subject tests. Users can choose between permutation testing with regression or correlation for a wide range of research questions. For a tutorial demonstrating the application of testing see here

These are examples of permutation tests: - Testing across subjects . - Testing across sessions . - Testing across trials . - Testing across visits .






            

          

      

      

    

  

    
      
          
            
  
Modules



	glhmm.glhmm
	glhmm
	glhmm.decode()

	glhmm.dual_estimate()

	glhmm.get_active_K()

	glhmm.get_beta()

	glhmm.get_betas()

	glhmm.get_covariance_matrix()

	glhmm.get_fe()

	glhmm.get_inverse_covariance_matrix()

	glhmm.get_mean()

	glhmm.get_means()

	glhmm.get_r2()

	glhmm.loglikelihood()

	glhmm.sample()

	glhmm.sample_Gamma()

	glhmm.train()









	glhmm.io
	load_files()

	load_hmm()

	load_statistics()

	read_flattened_hmm_mat()

	save_hmm()

	save_statistics()





	glhmm.preproc
	apply_pca()

	build_data_autoregressive()

	build_data_partial_connectivity()

	build_data_tde()

	load_files()

	preprocess_data()





	glhmm.auxiliary
	Gamma_entropy()

	Gamma_indices_to_Xi_indices()

	approximate_Xi()

	compute_alpha_beta()

	compute_qstar()

	dirichlet_kl()

	gamma_kl()

	gauss1d_kl()

	gauss_kl()

	get_T()

	jls_extract_def()

	make_indices_from_T()

	padGamma()

	slice_matrix()

	wishart_kl()





	glhmm.utils
	get_FO()

	get_FO_entropy()

	get_life_times()

	get_maxFO()

	get_state_evoked_response()

	get_state_evoked_response_entropy()

	get_state_onsets()

	get_switching_rate()

	get_visits()





	glhmm.graphics
	blue_colormap()

	create_cmap_alpha()

	custom_colormap()

	interpolate_colormap()

	plot_average_probability()

	plot_condition_difference()

	plot_correlation_matrix()

	plot_p_value_matrix()

	plot_p_values_bar()

	plot_p_values_over_time()

	plot_permutation_distribution()

	plot_scatter_with_labels()

	plot_vpath()

	red_colormap()

	show_Gamma()

	show_beta()

	show_temporal_statistic()

	show_trans_prob_mat()





	glhmm.prediction
	classify_phenotype()

	compute_gradient()

	deconfound()

	get_groups()

	get_summ_features()

	hmm_kernel()

	predict_phenotype()

	reconfound()

	test_classif()

	test_pred()

	train_classif()

	train_pred()





	glhmm.statistics
	calculate_baseline_difference()

	calculate_geometric_pval()

	calculate_nan_correlation_matrix()

	calculate_nan_f_test()

	calculate_nan_regression()

	calculate_nan_regression_f_test()

	calculate_nan_t_test()

	calculate_statepair_difference()

	deconfound_values()

	detect_significant_intervals()

	generate_vpath_1D()

	get_concatenate_sessions()

	get_indices_array()

	get_indices_from_list()

	get_input_shape()

	get_pval()

	get_session_indices()

	get_timestamp_indices()

	identify_coloumns_for_t_and_f_tests()

	initialize_arrays()

	initialize_permutation_matrices()

	permutation_matrix_across_subjects()

	permutation_matrix_across_trials_within_session()

	permutation_matrix_within_subject_across_sessions()

	permute_subject_trial_idx()

	process_family_structure()

	pval_cluster_based_correction()

	pval_correction()

	reconstruct_concatenated_design()

	remove_nan_values()

	surrogate_state_time()

	surrogate_viterbi_path()

	test_across_sessions_within_subject()

	test_across_subjects()

	test_across_trials_within_session()

	test_across_visits()

	test_statistics_calculations()

	validate_condition()

	viterbi_path_to_stc()





	glhmm.palm_functions
	hcp2block()

	is_single_value()

	lmaxflipnode()

	lmaxpermnode()

	lseq2np()

	maketree()

	maxflipnode()

	maxpermnode()

	palm_factorial()

	palm_maxshuf()

	palm_permtree()

	palm_quickperms()

	palm_reindex()

	palm_shuftree()

	palm_tree()

	pickperm()

	randomperm()

	renumber()

	seq2np()












            

          

      

      

    

  

    
      
          
            
  
glhmm.glhmm

Gaussian Linear Hidden Markov Model
@author: Diego Vidaurre 2023


	
class glhmm.glhmm.glhmm(K=10, covtype='shareddiag', model_mean='state', model_beta='state', dirichlet_diag=10, connectivity=None, Pstructure=None, Pistructure=None)

	Bases: object

Gaussian Linear Hidden Markov Model class to decode stimulus from data.


Attributes:


	Kint, default=10
	number of states in the model.



	covtypestr, {‘shareddiag’, ‘diag’,’sharedfull’,’full’}, default ‘shareddiag’
	Type of covariance matrix. Choose ‘shareddiag’ to have one diagonal covariance matrix for all states,
or ‘diag’ to have a diagonal full covariance matrix for each state,
or ‘sharedfull’ to have a shared full covariance matrix for all states,
or ‘full’ to have a full covariance matrix for each state.



	model_meanstr, {‘state’, ‘shared’, ‘no’}, default ‘state’
	Model for the mean. If ‘state’, the mean will be modelled state-dependent.
If ‘shared’, the mean will be modelled globally (shared between all states).
If ‘no’ the mean of the timeseries will not be used to drive the states.



	model_betastr, {‘state’, ‘shared’, ‘no’}, default ‘state’
	Model for the beta. If ‘state’, the regression coefficients will be modelled state-dependent.
If ‘shared’, the regression coefficients will be modelled globally (shared between all states).
If ‘no’ the regression coefficients will not be used to drive the states.



	dirichlet_diagfloat, default=10
	The value of the diagonal of the Dirichlet distribution for the transition probabilities.
The higher the value, the more persistent the states will be.
Note that this value is relative; the prior competes with the data, so if the timeseries is very long,
the dirichlet_diag may have little effect unless it is set to a very large value.



	connectivityarray_like of shape (n_states, n_states), optional
	Matrix of binary values defining the connectivity of the states.
This parameter can only be used with a diagonal covariance matrix (i.e., covtype=’diag’).



	Pstructurearray_like, optional
	Binary matrix defining the allowed transitions between states.
The default is a (n_states, n_states) matrix of all ones, allowing all possible transitions between states.



	Pistructurearray_like, optional
	Binary vector defining the allowed initial states.
The default is a (n_states,) vector of all ones, allowing all states to be used as initial states.







Notes:

This class requires the following modules: numpy, math, scipy, sys, warnings, copy, and time.


	
decode(X, Y, indices=None, files=None, viterbi=False, set=None)

	Calculates state time courses for all the data using either parallel or sequential processing.


Parameters:


	Xarray-like of shape (n_samples, n_parcels)
	The timeseries of set of variables 1.



	Yarray-like of shape (n_samples, n_parcels)
	The timeseries of set of variables 2.



	indicesarray-like of shape (n_sessions, 2), optional, default=None
	The start and end indices of each trial/session in the input data.



	fileslist of str, optional, default=None
	List of filenames corresponding to the indices.



	viterbibool, optional, default=False
	Whether or not the Viterbi algorithm should be used.



	setint, optional, default=None
	Index of the sessions set to decode.







Returns:


	If viterbi=True:
	
	vpatharray of shape (n_samples,)
	The most likely state sequence.







	If viterbi=False:
	
	Gammaarray of shape (n_samples, n_states)
	The state probability timeseries.



	Xiarray of shape (n_samples - n_sessions, n_states, n_states)
	The joint probabilities of past and future states conditioned on data.



	scalearray-like of shape (n_samples,)
	The scaling factors from the inference, used to compute the free energy.
In normal use, we would do


Gamma,Xi,_ = hmm.decode(X,Y,indices)














Raises:


	Exception
	If the model has not been trained.
If both ‘files’ and ‘Y’ arguments are provided.











	
dual_estimate(X, Y, indices=None, Gamma=None, Xi=None, for_kernel=False)

	Dual estimation of HMM parameters.


Parameters:


	Xarray-like of shape (n_samples, n_variables_1)
	The timeseries of set of variables 1.



	Yarray-like of shape (n_samples, n_variables_2)
	The timeseries of set of variables 2.



	indicesarray-like of shape (n_sessions, 2), optional
	The start and end indices of each trial/session in the input data. If None, a single segment spanning the entire sequence is used.



	Gammaarray-like of shape (n_samples, n_states), optional
	The state probabilities. If None, it is computed from the input observations.



	Xiarray-like of shape (n_samples - n_sessions, n_states, n_states), optional
	The joint probabilities of past and future states conditioned on data. If None, it is computed from the input observations.



	for_kernelbool, optional
	Whether purpose of dual estimation is kernel (gradient) computation, or not
If True, function will also return Gamma and Xi (default False)







Returns:


	hmm_dualobject
	A copy of the HMM object with updated dynamics and observation distributions.











	
get_active_K()

	Returns the number of active states


Returns:


	K_activeint
	Number of active states.











	
get_beta(k=0)

	Returns the regression coefficients (beta) for the specified state.


Parameters:


	kint, optional, default=0
	The index of the state for which to retrieve the beta value.







Returns:


	beta: ndarray of shape (n_variables_1 x n_variables_2)
	The regression coefficients of each variable in X on each variable in Y for the specified state.







Raises:


	Exception
	If the model has not yet been trained.
If the model has no beta.











	
get_betas()

	Returns the regression coefficients (beta) for all states.


Returns:


	betas: ndarray of shape (n_variables_1 x n_variables_2 x n_states)
	The regression coefficients of each variable in X on each variable in Y for all states.







Raises:


	Exception
	If the model has not yet been trained.
If the model has no beta.











	
get_covariance_matrix(k=0)

	Returns the covariance matrix for the specified state.


Parameters:


	kint, optional
	The index of the state. Default=0.







Returns:


	array of shape (n_parcels, n_parcels)
	The covariance matrix for the specified state.







Raises:


	Exception
	If the model has not been trained.











	
get_fe(X, Y, Gamma, Xi, scale=None, indices=None, todo=None, non_informative_prior_P=False)

	Computes the Free Energy of an HMM depending on observation model.


Parameters:


	Xarray of shape (n_samples, n_parcels)
	The timeseries of set of variables 1.



	Yarray of shape (n_samples, n_parcels)
	The timeseries of set of variables 2.



	Gammaarray of shape (n_samples, n_states), default=None
	The state timeseries probabilities.



	Xiarray-like of shape (n_samples - n_sessions, n_states, n_states)
	The joint probabilities of past and future states conditioned on data.



	scalearray-like of shape (n_samples,), default=None
	The scaling factors used to compute the free energy of the
dataset. If None, scaling is automatically computed.



	indicesarray-like of shape (n_sessions, 2), optional, default=None
	The start and end indices of each trial/session in the input data.



	todo:  bool of shape (n_terms,) or None, default=None
	Whether or not each of the 5 elements (see fe_terms) should be computed.
Only for internal use.



	non_informative_prior_P: array-like of shape (n_states, n_states), optional, default=False
	Prior of transition probability matrix
Only for internal use.







Returns:


	fe_termsarray of shape (n_terms,)
	The variational free energy, separated into different terms:
- element 1: Gamma Entropy
- element 2: Data negative log-likelihood
- element 3: Gamma negative log-likelihood
- element 4: KL divergence for initial and transition probabilities
- element 5: KL divergence for the state parameters







Raises:


	Exception
	If the model has not been trained.







Notes:

This function computes the variational free energy using a specific algorithm. For more information on the algorithm, see [^1].



References:

[^1] Smith, J. et al. “A variational approach to Bayesian learning of switching dynamics in dynamical systems.” Journal of Machine Learning Research, vol. 18, no. 4, 2017.







	
get_inverse_covariance_matrix(k=0)

	Returns the inverse covariance matrix for the specified state.


Parameters:


	kint, optional
	The index of the state. Default=0.







Returns:


	array of shape (n_parcels, n_parcels)
	The inverse covariance matrix for the specified state.







Raises:


	Exception
	If the model has not been trained.











	
get_mean(k=0)

	Returns the mean for the specified state.


Parameters:


	kint, optional, default=0
	The index of the state for which to retrieve the mean.







Returns:


	mean: ndarray of shape (n_variables_2,)
	The mean value of each variable in Y for the specified state.







Raises:


	Exception
	If the model has not yet been trained.
If the model has no mean.











	
get_means()

	Returns the means for all states.


Returns:


	means: ndarray of shape (n_variables_2, n_states)
	The mean value of each variable in Y for all states.







Raises:


	Exception
	If the model has not yet been trained.
If the model has no mean.











	
get_r2(X, Y, Gamma, indices=None)

	Computes the explained variance per session/trial and per column of Y


Parameters:


	Xarray of shape (n_samples, n_variables_1)
	The timeseries of set of variables 1.



	Yarray of shape (n_samples, n_variables_2)
	The timeseries of set of variables 2.



	Gammaarray of shape (n_samples, n_states), default=None
	The state timeseries probabilities.



	indicesarray-like of shape (n_sessions, 2), optional, default=None
	The start and end indices of each trial/session in the input data.







Returns:


	r2array of shape (n_sessions, n_variables_2)
	The R-squared (proportion of the variance explained) for each session and each variable in Y.







Raises:


	Exception
	If the model has not been trained, or if it does not have neither mean or beta







Notes:

This function does not take the covariance matrix into account







	
loglikelihood(X, Y)

	Computes the likelihood of the model per state and time point given the data X and Y.


Parameters:


	Xarray-like of shape (n_samples, n_parcels)
	The timeseries of set of variables 1.



	Yarray-like of shape (n_samples, n_parcels)
	The timeseries of set of variables 2.







Returns:


	Larray of shape (n_samples, n_states)
	The likelihood of the model per state and time point given the data X and Y.







Raises:


	Exception
	If the model has not been trained.











	
sample(size, X=None, Gamma=None)

	Generates Gamma and Y for timeseries of lengths specified in variable size.


Parameters:


	sizearray of shape (n_sessions,) or (n_sessions, 2)
	If size is 1-dimensional, each element represents the length of a session. If size is 2-dimensional,
each row of size represents the start and end indices of a session in a timeseries.



	Xarray of shape (n_samples, n_parcels), default=None
	The timeseries of set of variables 1.



	Gammaarray of shape (n_samples, n_states), default=None
	The state probability timeseries.







Returns:


	Gammaarray of shape (n_samples, n_states)
	The state probability timeseries.



	Y: array of shape (n_samples,n_parcels)
	The timeseries of set of variables 2.



	If X=None:
	
	Xarray of shape (n_samples, n_parcels)
	The timeseries of set of variables 1.















	
sample_Gamma(size)

	Generates Gamma, for timeseries of lengths specified in variable size.


Parameters:


	sizearray
	Array of shape (n_sessions,) or (n_sessions, 2). If size is 1-dimensional,
each element represents the length of a session. If size is 2-dimensional,
each row of size represents the start and end indices of a session in a timeseries.







Returns:


	Gammaarray of shape (n_samples, n_states)
	The state probability timeseries.











	
train(X=None, Y=None, indices=None, files=None, Gamma=None, Xi=None, scale=None, options=None)

	Train the GLHMM on input data X and Y, which most general formulation is
Y = mu_k + X beta_k + noise
where noise is Gaussian with mean zero and standard deviation Sigma_k

It supports both standard and stochastic variational learning;
for the latter, data must be supplied in files format


Parameters:


	Xarray-like of shape (n_samples, n_variables_1)
	The timeseries of set of variables 1.



	Yarray-like of shape (n_samples, n_variables_2)
	The timeseries of set of variables 2.



	indicesarray-like of shape (n_sessions, 2), optional
	The start and end indices of each trial/session in the input data. If None, one big segment with no cuts is assumed.



	filesstr or list of str, optional
	The filename(s) containing the data to load. If not None, X, Y, and indices are ignored.



	Gammaarray-like of shape (n_samples, n_states), optional
	The initial values of the state probabilities.



	Xiarray-like of shape (n_samples - n_sessions, n_states, n_states), optional
	The joint probabilities of past and future states conditioned on data.



	scalearray-like of shape (n_samples,), optional
	The scaling factors used to compute the free energy of the
dataset. If None, scaling is automatically computed.



	optionsdict, optional
	A dictionary with options to control the training process.







Returns:


	Gammaarray-like of shape (n_samples, n_states)
	The state probabilities.
To avoid unnecessary use of memory, Gamma is only returned if learning is non-stochastic;
otherwise it is returned as an empty numpy array.
To get Gamma after stochastic learning, use the decode method.



	Xiarray-like of shape (n_samples - n_sessions, n_states, n_states)
	The joint probabilities of past and future states conditioned on data.
To avoid unnecessary use of memory, Xi is only returned if learning is non-stochastic;
otherwise it is returned as an empty numpy array.
To get Xi after stochastic learning, use the decode method.



	fearray-like
	The free energy computed at each iteration of the training process.







Raises:


	Exception
	
If files and Y are both provided or if neither are provided.
If X is not provided and the hyperparameter ‘model_beta’ is True.




If ‘files’ is not provided and stochastic learning is called upon
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Input/output functions - Gaussian Linear Hidden Markov Model
@author: Diego Vidaurre 2023


	
glhmm.io.load_files(files, I=None, do_only_indices=False)

	Loads data from files and returns the loaded data, indices, and individual indices for each file.






	
glhmm.io.load_hmm(filename)

	Loads a glhmm object from filename






	
glhmm.io.load_statistics(file_name, load_directory=None)

	Load statistics data from a file.


	Parameters:

	
	file_name (str) – The name of the file containing the saved statistics data, with or without extension.


	load_directory (str, optional) – The directory path where the file is located (default is the current working directory).






	Returns:

	data_dict – The dictionary containing the loaded statistics data.



	Return type:

	dict



	Raises:

	
	FileNotFoundError – If the specified file does not exist.


	ValueError – If an unsupported file format is encountered.













	
glhmm.io.read_flattened_hmm_mat(file)

	Reads a MATLAB file containing hidden Markov model (HMM) parameters,
and initializes a Gaussian linear hidden Markov model (GLHMM) using those parameters.






	
glhmm.io.save_hmm(hmm, filename)

	Saves a glhmm object on filename






	
glhmm.io.save_statistics(data_dict, file_name='statistics', save_directory=None, format='npy')

	Save statistics data to a file in the specified directory with optional format (npy or npz).


	Parameters:

	
	data_dict (dict) – The dictionary containing statistics data to be saved.


	file_name (str, optional) – The name of the file (default is ‘statistics’).


	save_directory (str, optional) – The directory path where the file will be saved (default is the current working directory).


	format (str) – The serialization format (‘npy’ or ‘npz’, default is ‘npy’).






	Return type:

	None
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Preprocessing functions - General/Gaussian Linear Hidden Markov Model
@author: Diego Vidaurre 2023


	
glhmm.preproc.apply_pca(X, d, whitening=False, exact=True)

	Applies PCA to the input data X.


Parameters:


	Xarray-like of shape (n_samples, n_parcels)
	The input data to be transformed.



	dint or float
	If int, the number of components to keep.
If float, the percentage of explained variance to keep.
If array-like of shape (n_parcels, n_components), the transformation matrix.



	whiteningbool, default=False
	Whether to whiten the transformed data.



	exactbool, default=True
	Whether to use full SVD solver for PCA.







Returns:


	X_transformedarray-like of shape (n_samples, n_components)
	The transformed data after applying PCA.











	
glhmm.preproc.build_data_autoregressive(data, indices, autoregressive_order=1, connectivity=None, center_data=True)

	Builds X and Y for the autoregressive model,
as well as an adapted indices array and predefined connectivity
matrix in the right format. X and Y are centered by default.


Parameters:


	dataarray-like of shape (n_samples,n_parcels)
	The data timeseries.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.



	autoregressive_orderint, optional, default=1
	The number of lags to include in the autoregressive model.



	connectivityarray-like of shape (n_parcels, n_parcels), optional, default=None
	The matrix indicating which regressors should be used for each variable.



	center_databool, optional, default=True
	If True, the data will be centered.







Returns:


	Xarray-like of shape (n_samples - n_sessions*autoregressive_order, n_parcels*autoregressive_order)
	The timeseries of set of variables 1 (i.e., the regressors).



	Yarray-like of shape (n_samples - n_sessions*autoregressive_order, n_parcels)
	The timeseries of set of variables 2 (i.e., variables to predict, targets).



	indices_newarray-like of shape (n_sessions, 2)
	The new array of start and end indices for each trial/session.



	connectivity_newarray-like of shape (n_parcels*autoregressive_order, n_parcels)
	The new connectivity matrix indicating which regressors should be used for each variable.











	
glhmm.preproc.build_data_partial_connectivity(X, Y, connectivity=None, center_data=True)

	Builds X and Y for the partial connectivity model,
essentially regressing out things when indicated in connectivity,
and getting rid of regressors / regressed variables that are not used;
it return connectivity with the right dimensions as well.


Parameters:


	Xnp.ndarray of shape (n_samples, n_parcels)
	The timeseries of set of variables 1 (i.e., the regressors).



	Ynp.ndarray of shape (n_samples, n_parcels)
	The timeseries of set of variables 2 (i.e., variables to predict, targets).



	connectivitynp.ndarray of shape (n_parcels, n_parcels), optional, default=None
	A binary matrix indicating which regressors affect which targets (i.e., variables to predict).



	center_databool, default=True
	Center data to zero mean.







Returns:


	X_newnp.ndarray of shape (n_samples, n_active_parcels)
	The timeseries of set of variables 1 (i.e., the regressors) after removing unused predictors and regressing out
the effects indicated in connectivity.



	Y_newnp.ndarray of shape (n_samples, n_active_parcels)
	The timeseries of set of variables 2 (i.e., variables to predict, targets) after removing unused targets and regressing out
the effects indicated in connectivity.



	connectivity_newnp.ndarray of shape (n_active_parcels, n_active_parcels), optional, default=None
	A binary matrix indicating which regressors affect which targets
The matrix has the same structure as connectivity after removing unused predictors and targets.











	
glhmm.preproc.build_data_tde(data, indices, lags, pca=None, standardise_pc=True)

	Builds X for the temporal delay embedded HMM, as well as an adapted indices array.


Parameters:


	datanumpy array of shape (n_samples, n_parcels)
	The data matrix.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.



	lagslist or array-like
	The lags to use for the embedding.



	pcaNone or int or float or numpy array, default=None
	The number of components for PCA, the explained variance for PCA, the precomputed PCA projection matrix,
or None to skip PCA.



	standardise_pcbool, default=True
	Whether or not to standardise the principal components before returning.







Returns:


	Xnumpy array of shape (n_samples - n_sessions*rwindow, n_parcels*n_lags)
	The delay-embedded timeseries data.



	indices_newnumpy array of shape (n_sessions, 2)
	The adapted indices for each segment of delay-embedded data.





PCA can be run optionally: if pca >=1, that is the number of components;
if pca < 1, that is explained variance;
if pca is a numpy array, then it is a precomputed PCA projection matrix;
if pca is None, then no PCA is run.







	
glhmm.preproc.load_files(files, I=None, do_only_indices=False)

	




	
glhmm.preproc.preprocess_data(data, indices, fs=1, standardise=True, filter=None, detrend=False, onpower=False, pca=None, whitening=False, exact_pca=True, downsample=None)

	Preprocess the input data.


Parameters:


	dataarray-like of shape (n_samples, n_parcels)
	The input data to be preprocessed.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.



	fsint or float, default=1
	The frequency of the input data.



	standardisebool, default=True
	Whether to standardize the input data.



	filtertuple of length 2 or None, default=None
	The low-pass and high-pass thresholds to apply to the input data.
If None, no filtering will be applied.
If a tuple, the first element is the low-pass threshold and the second is the high-pass threshold.



	detrendbool, default=False
	Whether to detrend the input data.



	onpowerbool, default=False
	Whether to calculate the power of the input data using the Hilbert transform.



	pcaint or float or None, default=None
	If int, the number of components to keep after applying PCA.
If float, the percentage of explained variance to keep after applying PCA.
If None, no PCA will be applied.



	whiteningbool, default=False
	Whether to whiten the input data after applying PCA.



	exact_pcabool, default=True
	Whether to use full SVD solver for PCA.



	downsampleint or float or None, default=None
	The new frequency of the input data after downsampling.
If None, no downsampling will be applied.







Returns:


	data_processedarray-like of shape (n_samples_processed, n_parcels)
	The preprocessed input data.



	indices_processedarray-like of shape (n_sessions_processed, 2)
	The start and end indices of each trial/session in the preprocessed data.
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Auxiliary functions - Gaussian Linear Hidden Markov Model
@author: Diego Vidaurre 2022


	
glhmm.auxiliary.Gamma_entropy(Gamma, Xi, indices)

	Computes the entropy of a Gamma distribution and a sequence of transition probabilities Xi.


Parameters:



	GammaArray-like of shape (n_samples, n_states)
	The posterior probabilities of a hidden variable.



	XiArray-like of shape (n_samples - n_sessions, n_states, n_states)
	The joint probability of past and future states conditioned on data.



	indicesArray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.










Returns:


float: The entropy of the Gamma distribution and the sequence of transition probabilities.










	
glhmm.auxiliary.Gamma_indices_to_Xi_indices(indices)

	Converts indices from Gamma array to Xi array format.

Note Xi has 1 sample less than Gamma per trial/session (i.e., n_samples - n_sessions).


Parameters:


	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.







Returns:


	indices_Xiarray-like of shape (n_sessions, 2)
	The converted indices in Xi array format.











	
glhmm.auxiliary.approximate_Xi(Gamma, indices)

	Approximates Xi array based on Gamma and indices.


Parameters:


	Gammaarray-like of shape (n_samples, n_states)
	The state probability time series.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.







Returns:


	Xiarray-like of shape (n_samples - n_sessions, n_states, n_states)
	The joint probabilities of past and future states conditioned on data.











	
glhmm.auxiliary.compute_alpha_beta(L, Pi, P)

	Computes alpha and beta values and scaling factors.


Parameters:


	Larray-like of shape (n_samples, n_states)
	The L matrix.



	Piarray-like with shape (n_states,)
	The initial state probabilities.



	Parray-like of shape (n_states, n_states)
	The transition probabilities across states.







Returns:


	aarray-like of shape (n_samples, n_states)
	The alpha values.



	barray-like of shape (n_samples, n_states)
	The beta values.



	scarray-like of shape (n_samples,)
	The scaling factors.











	
glhmm.auxiliary.compute_qstar(L, Pi, P)

	Compute the most probable state sequence.


Parameters:


	Larray-like of shape (n_samples, n_states)
	The L matrix.



	Piarray-like with shape (n_states,)
	The initial state probabilities.



	Parray-like of shape (n_states, n_states)
	The transition probabilities across states.







Returns:


	qstararray-like of shape (n_samples, n_states)
	The most probable state sequence.











	
glhmm.auxiliary.dirichlet_kl(alpha_q, alpha_p)

	Computes the Kullback-Leibler divergence between two Dirichlet distributions with parameters alpha_q and alpha_p.


Parameters:



	alpha_qArray of shape (n_states,)
	The concentration parameters of the first Dirichlet distribution.



	alpha_pArray of shape (n_states,)
	The concentration parameters of the second Dirichlet distribution.










Returns:


float: The Kullback-Leibler divergence between the two Dirichlet distributions.










	
glhmm.auxiliary.gamma_kl(shape_q, rate_q, shape_p, rate_p)

	Computes the Kullback-Leibler divergence between two Gamma distributions with shape and rate parameters.

The Kullback-Leibler divergence is a measure of how different two probability distributions are.

This implementation follows the formula presented here (https://statproofbook.github.io/P/gam-kl) from the book “KL-Divergences of Normal, Gamma, Dirichlet and Wishart densities” by Penny, William D. in 2001.


Parameters:


	shape_qfloat or numpy.ndarray
	The shape parameter of the first Gamma distribution.



	rate_qfloat or numpy.ndarray
	The rate parameter of the first Gamma distribution.



	shape_pfloat or numpy.ndarray
	The shape parameter of the second Gamma distribution.



	rate_pfloat or numpy.ndarray
	The rate parameter of the second Gamma distribution.







Returns:


	Dfloat or numpy.ndarray
	The Kullback-Leibler divergence between the two Gamma distributions.











	
glhmm.auxiliary.gauss1d_kl(mu_q, sigma_q, mu_p, sigma_p)

	Computes the KL divergence between two univariate Gaussian distributions.


Parameters:


	mu_qfloat of shape (n_parcels,)
	The mean of the first Gaussian distribution.



	sigma_qfloat of shape (n_parcels, n_parcels)
	The variance of the first Gaussian distribution.



	mu_pfloat of shape (n_parcels,)
	The mean of the second Gaussian distribution.



	sigma_pfloat of shape (n_parcels, n_parcels)
	The variance of the second Gaussian distribution.







Returns:


	Dfloat
	The KL divergence between the two Gaussian distributions.











	
glhmm.auxiliary.gauss_kl(mu_q, sigma_q, mu_p, sigma_p)

	Computes the KL divergence between two multivariate Gaussian distributions.


Parameters:


	mu_qfloat of shape (n_parcels,)
	The mean of the first Gaussian distribution.



	sigma_qfloat of shape (n_parcels, n_parcels)
	The variance of the first Gaussian distribution.



	mu_pfloat of shape (n_parcels,)
	The mean of the second Gaussian distribution.



	sigma_pfloat of shape (n_parcels, n_parcels)
	The variance of the second Gaussian distribution.







Returns:


	Dfloat
	The KL divergence between the two Gaussian distributions.











	
glhmm.auxiliary.get_T(idx_data)

	Returns the timepoints spent for each trial/session based on the given indices.
We want to get the variable “T” when we are using the function padGamma


Parameters:


idx_data (numpy.ndarray): The indices that mark the timepoints for when each trial/session starts and ends.
It should be a 2D array where each row represents the start and end index for a trial.
Example: idx_data = np.array([[0, 150], [150, 300], [300, 500]])






Returns:


T (numpy.ndarray): An array containing the timepoints spent for each trial/session.
For example, given idx_data = np.array([[0, 150], [150, 300], [300, 500]]),
the function would return T = np.array([150, 150, 200]).










	
glhmm.auxiliary.jls_extract_def()

	




	
glhmm.auxiliary.make_indices_from_T(T)

	Creates indices array from trials/sessions lengths.


Parameters:


	Tarray-like of shape (n_sessions,)
	Contains the lengths of each trial/session.







Returns:


	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.











	
glhmm.auxiliary.padGamma(Gamma, T, options)

	Adjusts the state time courses to have the same size as the data time series.


Parameters:


Gamma (numpy.ndarray): The state time courses.
T (numpy.ndarray): Timepoints spent for each trial/session.
options (dict): Dictionary containing various options.
- ‘embeddedlags’ (list): Array of lagging times if ‘embeddedlags’ is specified.
- ‘order’ (int): Integer value if ‘order’ is specified.






Returns:


Gamma (numpy.ndarray): Adjusted state time courses.










	
glhmm.auxiliary.slice_matrix(M, indices)

	Slices rows of input matrix M based on indices array along axis 0.


Parameters:


	Marray-like of shape (n_samples, n_parcels)
	The input matrix.



	indicesarray-like of shape (n_sessions, 2)
	The indices that define the sections (i.e., trials/sessions) of the data to be processed.







Returns:


	M_slicedarray-like of shape (n_total_samples, n_parcels)
	The sliced matrix.











	
glhmm.auxiliary.wishart_kl(shape_q, C_q, shape_p, C_p)

	Computes the Kullback-Leibler (KL) divergence between two Wishart distributions.


Parameters:


	shape_qfloat
	Shape parameter of the first Wishart distribution.



	C_qndarray of shape (n_parcels, n_parcels)
	Scale parameter of the first Wishart distribution.



	shape_pfloat
	Shape parameter of the second Wishart distribution.



	C_pndarray of shape (n_parcels, n_parcels)
	Scale parameter of the second Wishart distribution.







Returns:


	Dfloat
	KL divergence from the first to the second Wishart distribution.
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Some public useful functions - Gaussian Linear Hidden Markov Model
@author: Diego Vidaurre 2023


	
glhmm.utils.get_FO(Gamma, indices, summation=False)

	Calculates the fractional occupancy of each state.


Parameters:


	Gammaarray-like, shape (n_samples, n_states)
	The state probability time series.



	indicesarray-like, shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.



	summationbool, optional, default=False
	If True, the sum of each row is not normalized, otherwise it is.







Returns:


	FOarray-like, shape (n_sessions, n_states)
	The fractional occupancy of each state per session.











	
glhmm.utils.get_FO_entropy(Gamma, indices)

	Calculates the entropy of each session, if we understand fractional occupancies as probabilities.


Parameters:


	Gammaarray-like of shape (n_samples, n_states)
	The Gamma represents the state probability timeseries.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.







Returns:


	entropyarray-like of shape (n_sessions,)
	The entropy of each session.











	
glhmm.utils.get_life_times(vpath, indices, threshold=0)

	Calculates the average, median and maximum life times for each state.


Parameters:


	vpatharray-like of shape (n_samples,)
	The viterbi path represents the most likely state sequence.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.



	thresholdint, optional, default=0
	A threshold value used to exclude visits with a duration below this value.







Returns:


	meanLFarray-like of shape (n_sessions, n_states)
	The average visit duration for each state in each trial/session.



	medianLFarray-like of shape (n_sessions, n_states)
	The median visit duration for each state in each trial/session.



	maxLFarray-like of shape (n_sessions, n_states)
	The maximum visit duration for each state in each trial/session.







Notes:

A visit to a state is defined as a contiguous sequence of time points in which the state is active.
The duration of a visit is the number of time points in the sequence.
This function uses the get_visits function to compute the visits and exclude those below the threshold.







	
glhmm.utils.get_maxFO(Gamma, indices)

	Calculates the maximum fractional occupancy per session.

The first argument can also be a viterbi path (vpath).


Parameters:


	Gammaarray-like of shape (n_samples, n_states); or a vpath, array of shape (n_samples,)
	The Gamma represents the state probability timeseries and the vpath represents the most likely state sequence.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.







Returns:


	maxFO: array-like of shape (n_sessions,)
	The maximum fractional occupancy across states for each trial/session







Notes:

The maxFO is useful to assess the amount of state mixing. For more information, see [^1].



References:


	[^1]: Ahrends, R., et al. (2022). Data and model considerations for estimating time-varying functional connectivity in fMRI. NeuroImage 252, 119026.
	https://pubmed.ncbi.nlm.nih.gov/35217207/)











	
glhmm.utils.get_state_evoked_response(Gamma, indices)

	Calculates the state evoked response

The first argument can also be a viterbi path (vpath).


Parameters:


	Gammaarray-like of shape (n_samples, n_states), or a vpath array of shape (n_samples,)
	The Gamma represents the state probability timeseries and the vpath represents the most likely state sequence.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.







Returns:


	serarray-like of shape (n_samples, n_states)
	The state evoked response matrix.







Raises:


	Exception
	If the input data violates any of the following conditions:
- There is only one trial/session
- Not all trials/sessions have the same length.











	
glhmm.utils.get_state_evoked_response_entropy(Gamma, indices)

	Calculates the entropy of each time point, if we understand state evoked responses as probabilities.


Parameters:


	Gamma: array-like of shape (n_samples, n_states)
	The Gamma represents the state probability timeseries.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.







Returns:


	entropy: array-like of shape (n_samples,)
	The entropy of each time point.











	
glhmm.utils.get_state_onsets(vpath, indices, threshold=0)

	Calculates the state onsets, i.e., the time points when each state activates.


Parameters:


	vpatharray-like of shape (n_samples, n_states)
	The viterbi path represents the most likely state sequence.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.



	thresholdint, optional, default=0
	A threshold value used to exclude visits with a duration below this value.







Returns:


	onsetslist of lists of ints
	A list of the time points when each state activates for each trial/session.







Notes:

A visit to a state is defined as a contiguous sequence of time points in which the state is active.
This function uses the get_visits function to compute the visits and exclude those below the threshold.







	
glhmm.utils.get_switching_rate(Gamma, indices)

	Calculates the switching rate.

The first argument can also be a viterbi path (vpath).


Parameters:


	Gammaarray-like of shape (n_samples, n_states), or a vpath array of shape (n_samples,)
	The Gamma represents the state probability timeseries and the vpath represents the most likely state sequence.



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.







Returns:


	SRarray-like of shape (n_sessions, n_states)
	The switching rate matrix.











	
glhmm.utils.get_visits(vpath, k, threshold=0)

	Computes a list of visits for state k, given a viterbi path (vpath).


Parameters:


	vpatharray-like of shape (n_samples,)
	The viterbi path represents the most likely state sequence.



	kint
	The state for which to compute the visits.



	thresholdint, optional, default=0
	A threshold value used to exclude visits with a duration below this value.







Returns:


	lengthslist of floats
	A list of visit durations for state k, where each duration is greater than the threshold.



	onsetslist of ints
	A list of onset time points for each visit.







Notes:

A visit to state k is defined as a contiguous sequence of time points in which state k is active.
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Basic graphics - Gaussian Linear Hidden Markov Model
@author: Diego Vidaurre 2023


	
glhmm.graphics.blue_colormap()

	




	
glhmm.graphics.create_cmap_alpha(cmap_list, color_array, alpha)

	




	
glhmm.graphics.custom_colormap()

	




	
glhmm.graphics.interpolate_colormap(cmap_list)

	Create a new colormap with the modified color_array.


Parameters:

cmap_list (numpy.ndarray): Original color array for the colormap.



Returns:

modified_cmap (numpy.ndarray): Modified colormap array.







	
glhmm.graphics.plot_average_probability(Gamma_reconstruct, title='Average probability for each state', fontsize=16, figsize=(7, 5), vertical_lines=None, line_colors=None, highlight_boxes=False)

	Plots the average probability for each state over time.


Parameters:


	Gamma_reconstructnumpy.ndarray
	3D array representing reconstructed gamma values.
Shape: (num_timepoints, num_trials, num_states)



	titlestr, optional
	Title for the plot (Default=’Average probability for each state’).



	fontsizeint, optional
	Font size for labels and title (Default=16).



	figsizetuple, optional
	Figure size (width, height) in inches (Default=(8, 6)).



	vertical_lineslist of tuples, optional
	List of pairs specifying indices for vertical lines (Default=None).



	line_colorslist of str or bool, optional
	List of colors for each pair of vertical lines. If True, generates random colors
(unless a list is provided) (Default=None).



	highlight_boxesbool, optional
	Whether to include highlighted boxes for each pair of vertical lines (Default=False).







Returns:

None







	
glhmm.graphics.plot_condition_difference(Gamma_reconstruct, R_trials, title='Average Probability and Difference', fontsize=16, figsize=(9, 2), vertical_lines=None, line_colors=None, highlight_boxes=False)

	Plots the average probability for each state over time for two conditions and their difference.


Parameters:


	Gamma_reconstructnumpy.ndarray
	3D array representing reconstructed gamma values.
Shape: (num_timepoints, num_trials, num_states)



	R_trialsnumpy.ndarray
	1D array representing the condition for each trial.
Should have the same length as the second dimension of Gamma_reconstruct.



	titlestr, optional
	Title for the plot (Default=’Average Probability and Difference’).



	fontsizeint, optional
	Font size for labels and title (Default=16).



	figsizetuple, optional
	Figure size (width, height) in inches (Default=(9, 2)).



	vertical_lineslist of tuples, optional
	List of pairs specifying indices for vertical lines (Default=None).



	line_colorslist of str or bool, optional
	List of colors for each pair of vertical lines. If True, generates random colors
(unless a list is provided) (Default= None).



	highlight_boxesbool, optional
	Whether to include highlighted boxes for each pair of vertical lines (Default=False).







Example usage:

plot_condition_difference(Gamma_reconstruct, R_trials, vertical_lines=[(10, 100)], highlight_boxes=True)







	
glhmm.graphics.plot_correlation_matrix(corr_vals, performed_tests, normalize_vals=False, figsize=(9, 5), steps=11, title_text='Heatmap (p-values)', annot=True, cmap_type='default', cmap_reverse=True, xlabel='', ylabel='', xticklabels=None, none_diagonal=False, num_colors=256)

	




	
glhmm.graphics.plot_p_value_matrix(pval, alpha=0.05, normalize_vals=True, figsize=(9, 5), steps=11, title_text='Heatmap (p-values)', annot=True, cmap_type='default', cmap_reverse=True, xlabel='', ylabel='', xticklabels=None, none_diagonal=False, num_colors=259)

	




	
glhmm.graphics.plot_p_values_bar(pval, variables=[], figsize=(9, 4), num_colors=256, xlabel='', ylabel='P-values (Log Scale)', title_text='Bar Plot', tick_positions=[0, 0.001, 0.01, 0.05, 0.1, 0.3, 1], top_adjustment=0.9, alpha=0.05, pad_title=20)

	Visualize a bar plot with LogNorm and a colorbar.


Parameters:

variables (list): List of categories or variables.
pval (array-like): Array of p-values.
figsize (tuple, optional): Figure size, default is (9, 4).
num_colors (int, optional): Number of colors in the colormap, default is 256.
xlabel (str, optional): X-axis label, default is “Categories”.
ylabel (str, optional): Y-axis label, default is “Values (log scale)”.
title_text (str, optional): Plot title, default is “Bar Plot with LogNorm”.
tick_positions (list, optional): Positions of ticks on the colorbar, default is [0, 0.001, 0.01, 0.05, 0.1, 0.3, 1].
top_adjustment (float, optional): Adjustment for extra space between title and plot, default is 0.9.



Returns:

None







	
glhmm.graphics.plot_p_values_over_time(pval, figsize=(8, 4), total_time_seconds=None, xlabel='Time points', ylabel='P-values (Log Scale)', title_text='P-values over time', xlim_start=0, tick_positions=[0, 0.001, 0.01, 0.05, 0.1, 0.3, 1], num_colors=259, alpha=0.05, plot_style='line', linewidth=2.5)

	Plot a scatter plot of p-values over time with a log-scale y-axis and a colorbar.


Parameters:


	pvalnumpy.ndarray
	The p-values data to be plotted.



	total_time_seconds (float, optional):
	Total time duration in seconds. If provided, time points will be scaled accordingly.



	xlabel (str, optional):
	Label for the x-axis. Default is ‘Time points’.



	ylabel (str, optional):
	Label for the y-axis. Default is ‘Y-axis (log scale)’.



	title_text (str, optional):
	Title for the plot. Default is ‘P-values over time’.



	tick_positions (list, optional):
	Specific values to mark on the y-axis. Default is [0, 0.001, 0.01, 0.05, 0.1, 0.3, 1].



	num_colors (int, optional):
	Resolution for the color bar. Default is 259.



	alpha (float, optional):
	Alpha value is the threshold we set for the p-values when doing visualization. Default is 0.05.



	plot_style (str, optional):
	Style of plot. Default is ‘line’.







Returns:

None (displays the plot).







	
glhmm.graphics.plot_permutation_distribution(test_statistic, title_text='Permutation Distribution', xlabel='Test Statistic Values', ylabel='Density')

	Plot the histogram of the permutation with the observed statistic marked.


Parameters:


	test_statisticnumpy.ndarray
	An array containing the permutation values.



	title_textstr, optional
	Title text of the plot (Default=”Permutation Distribution”).



	xlabelstr, optional
	Text of the xlabel (Default=”Test Statistic Values”).



	ylabelstr, optional
	Text of the ylabel (Default=”Density”).







Returns:


	None
	Displays the histogram plot.











	
glhmm.graphics.plot_scatter_with_labels(p_values, alpha=0.05, title_text='', xlabel=None, ylabel=None, xlim_start=0.9, ylim_start=0)

	Create a scatter plot to visualize p-values with labels indicating significant points.


Parameters:


	p_valuesnumpy.ndarray
	An array of p-values. Can be a 1D array or a 2D array with shape (1, 5).



	alphafloat, optional
	Threshold for significance (Default=0.05).



	title_textstr, optional
	The title text for the plot (Default=””).



	xlabelstr, optional
	The label for the x-axis (Default=None).



	ylabelstr, optional
	The label for the y-axis (Default=None).



	xlim_startfloat, optional
	Start position of x-axis limits (Default=-5).



	ylim_startfloat, optional
	Start position of y-axis limits (Default=-0.1).







Returns:

None



Notes:

Points with p-values less than alpha are considered significant and marked with red text.







	
glhmm.graphics.plot_vpath(vpath, signal=[], xlabel='Time Steps', figsize=(7, 4), ylabel='', yticks=None, line_width=2, label_signal='Signal')

	




	
glhmm.graphics.red_colormap()

	




	
glhmm.graphics.show_Gamma(Gamma, line_overlay=None, tlim=None, Hz=1, palette='viridis')

	Displays the activity of the hidden states as a function of time.


Parameters:


	Gammaarray of shape (n_samples, n_states)
	The state timeseries probabilities.



	line_overlayarray of shape (n_samples, 1)
	A secondary related data type to overlay as a line.



	tlim2x1 array or None, default=None
	The time interval to be displayed. If None (default), displays the
entire sequence.



	Hzint, default=1
	The frequency of the signal, in Hz.



	palettestr, default = ‘Oranges’
	The name of the color palette to use.











	
glhmm.graphics.show_beta(hmm, only_active_states=True, recompute_states=False, X=None, Y=None, Gamma=None, show_average=None, alpha=1.0)

	Displays the beta coefficients of a given HMM.
The beta coefficients can be extracted directly from the HMM structure or reestimated from the data;
for the latter, X, Y and Gamma need to be provided as parameters.
This is useful for example if one has run the model on PCA space,
but wants to show coefficients in the original space.


Parameters:


	hmm: HMM object
	An instance of the HMM class containing the beta coefficients to be visualized.



	only_active_states: bool, optional, default=False
	If True, only the beta coefficients of active states are shown.



	recompute_states: bool, optional, default=False
	If True, the betas will be recomputed from the data and the state time courses



	X: numpy.ndarray, optional, default=None
	The timeseries of set of variables 1.



	Y: numpy.ndarray, optional, default=None
	The timeseries of set of variables 2.



	Gamma: numpy.ndarray, optional, default=None
	The state time courses



	show_average: bool, optional, default=None
	If True, an additional row of the average beta coefficients is shown.



	alpha: float, optional, default=0.1
	The regularisation parameter to be applied if the betas are to be recomputed.











	
glhmm.graphics.show_temporal_statistic(Gamma, indices, statistic='FO', type_plot='barplot')

	Plots a statistic over time for a set of sessions.


Parameters:


	Gammaarray of shape (n_samples, n_states)
	The state timeseries probabilities.



	indices: numpy.ndarray of shape (n_sessions,)
	The session indices to plot.



	statistic: str, default=’FO’
	The statistic to compute and plot. Can be ‘FO’, ‘switching_rate’ or ‘FO_entropy’.



	type_plot: str, default=’barplot’
	The type of plot to generate. Can be ‘barplot’, ‘boxplot’ or ‘matrix’.







Raises:


	Exception
	
	Statistic is not one of ‘FO’, ‘switching_rate’ or ‘FO_entropy’.


	type_plot is ‘boxplot’ and there are less than 10 sessions.


	type_plot is ‘matrix’ and there is only one session.














	
glhmm.graphics.show_trans_prob_mat(hmm, only_active_states=False, show_diag=True, show_colorbar=True)

	Displays the transition probability matrix of a given HMM.


Parameters:


	hmm: HMM object
	An instance of the HMM class containing the transition probability matrix to be visualized.



	only_active_statesbool, optional, default=False
	Whether to display only active states or all states in the matrix.



	show_diagbool, optional, defatult=True
	Whether to display the diagonal elements of the matrix or not.



	show_colorbarbool, optional, default=True
	Whether to display the colorbar next to the matrix or not.













            

          

      

      

    

  

    
      
          
            
  
glhmm.prediction

Prediction from Gaussian Linear Hidden Markov Model
@author: Christine Ahrends 2023


	
glhmm.prediction.classify_phenotype(hmm, Y, behav, indices, predictor='Fisherkernel', estimator='SVM', options=None)

	Classify phenotype from HMM
This uses either the Fisher kernel (default) or a set of HMM summary metrics
to make a classification, in a nested cross-validated way.
By default, X is standardised/centered.
Estimators so far include: SVM and Logistic Regression
Cross-validation strategies so far include: KFold and GroupKFold
Hyperparameter optimization strategies so far include: only grid search


Parameters:


	hmmHMM object
	An instance of the HMM class, estimated on the group-level



	Yarray-like of shape (n_samples, n_variables_2)
	(group-level) timeseries data



	behavarray-like of shape (n_sessions,)
	phenotype, behaviour, or other external labels to be predicted



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.
Note that this function does not work if indices=None



	predictorchar (optional, default to ‘Fisherkernel’)
	What to predict from, either ‘Fisherkernel’ or ‘summary_metrics’ (default=’Fisherkernel’)



	estimatorchar (optional, default to ‘SVM’)
	Model to be used for classification (default=’SVM’)
This should be the name of a sklearn base estimator
(for now either ‘SVM’ or ‘LogisticRegression’)



	optionsdict (optional, default to None)
	
	general relevant options are:
	‘CVscheme’: char, which CVscheme to use (default: ‘GroupKFold’ if group structure is specified, otherwise: KFold)
‘nfolds’: int, number of folds k for (outer and inner) k-fold CV loops
‘group_structure’: ndarray of (n_sessions, n_sessions), matrix specifying group structure: positive values if sessions(/subjects) are related, zeros otherwise
‘return_scores’: bool, whether to return also the model scores of each fold
‘return_models’: bool, whether to return also the trained models of each fold
‘return_hyperparams’: bool, whether to return also the optimised hyperparameters of each fold
possible hyperparameters for model, e.g. ‘alpha’ for (kernel) ridge regression
‘return_prob’: bool, whether to return also the estimated probabilities



	for Fisher kernel, relevant options are:
	‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO)
‘incl_Pi’: bool, whether to include the gradient w.r.t. the initial state probabilities when computing the Fisher kernel
‘incl_P’: bool, whether to include the gradient w.r.t. the transition probabilities
‘incl_Mu’: bool, whether to include the gradient w.r.t. the state means (note that this only works if means were not set to 0 when training HMM)
‘incl_Sigma’: bool, whether to include the gradient w.r.t. the state covariances



	for summary metrics, relevant options are:
	‘metrics’: list of char, containing metrics to be included as features











Returns:


	resultsdict
	containing
‘behav_pred’: predicted labels on test sets
‘acc’: overall accuracy
(if requested):
‘behav_prob’: predicted probabilities of each class on test set
‘scores’: the model scores of each fold
‘models’: the trained models from each fold
‘hyperparams’: the optimised hyperparameters of each fold







Raises:


	Exception
	If the hmm has not been trained or if necessary input is missing







Notes:

If behav contains NaNs, these subjects/sessions will be removed in Y and confounds







	
glhmm.prediction.compute_gradient(hmm, Y, incl_Pi=True, incl_P=True, incl_Mu=False, incl_Sigma=True)

	Computes the gradient of the log-likelihood for timeseries Y
with respect to specified HMM parameters


Parameters:


	hmmHMM object
	An instance of the HMM class, estimated on the group-level



	Yarray-like of shape (n_samples, n_variables_2)
	(subject- or session-level) timeseries data



	incl_Pibool, default=True
	whether to compute gradient w.r.t state probabilities



	incl_Pbool, default=True
	whether to compute gradient w.r.t. transition probabilities



	incl_Mubool, default=False
	whether to compute gradient w.r.t state means
(only possible if state means were estimated during training)



	incl_Sigmabool, default=False
	whether to compute gradient w.r.t. state covariances
(for now only for full covariance matrix)







Returns:

hmmgrad : array of shape (sum(len(requested_parameters)))



Raises:


	Exception
	If the model has not been trained or if requested parameters do not exist
(e.g. if Mu is requested but state means were not estimated)







Notes:

Does not include gradient computation for X and beta







	
glhmm.prediction.deconfound(Y, confX, betaY=None, my=None)

	Deconfound






	
glhmm.prediction.get_groups(group_structure)

	Util function to get groups from group structure matrix such as family structure.
Output can be used to make sure groups/families are not split across folds during
cross validation, e.g. using sklearn’s GroupKFold. Groups are defined as components
in the adjacency matrix.


Parameter:


	group_structurearray-like of shape (n_sessions, n_sessions)
	a matrix specifying the structure of the dataset, with positive
values indicating relations between sessions(/subjects) and zeros indicating no relations.
Note: The diagonal will be set to 1







Returns:


	csarray-like of shape (n_sessions,)
	1D array containing the group each session belongs to











	
glhmm.prediction.get_summ_features(hmm, Y, indices, metrics)

	Util function to get summary features from HMM.
Output can be used as input features for ML


Parameters:


	hmmHMM object
	An instance of the HMM class, estimated on the group-level



	Yarray-like of shape (n_samples, n_variables_2)
	(group-level) timeseries data



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.
Note that kernel cannot be computed if indices=None



	metricslist
	names of metrics to be extracted. For now, this should be one or more
of ‘FO’, ‘switching_rate’, ‘lifetimes’







Returns:


	featuresarray-like of shape (n_sessions, n_features)
	The HMM summary metrics collected into a feature matrix











	
glhmm.prediction.hmm_kernel(hmm, Y, indices, type='Fisher', shape='linear', incl_Pi=True, incl_P=True, incl_Mu=False, incl_Sigma=True, tau=None, return_feat=False, return_dist=False)

	Constructs a kernel from an HMM, as well as the respective feature matrix
and/or distance matrix


Parameters:


	hmmHMM object
	An instance of the HMM class, estimated on the group-level



	Yarray-like of shape (n_samples, n_variables_2)
	(group-level) timeseries data



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.
Note that kernel cannot be computed if indices=None



	typestr, optional
	The type of kernel to be constructed
(default: ‘Fisher’)



	shapestr, optional
	The shape of kernel to be constructed, either ‘linear’ or ‘Gaussian’
(default: ‘linear’)



	incl_Pibool, default=True
	whether to include state probabilities in kernel construction



	incl_Pbool, default=True
	whether to include transition probabilities in kernel construction



	incl_Mubool, default=False
	whether to include state means in kernel construction
(only possible if state means were estimated during training)



	incl_Sigmabool, default=False
	whether to include state covariances in kernel construction
(for now only for full covariance matrix)



	return_featbool, default=False
	whether to return also the feature matrix



	return_distbool, default=False
	whether to return also the distance matrix







Returns:


	kernelarray of shape (n_sessions, n_sessions)
	HMM Kernel for subjects/sessions contained in Y



	featarray of shape (n_sessions, sum(len(requested_parameters)))
	Feature matrix for subjects/sessions contained in Y for requested parameters



	distarray of shape (n_sessions, n_sessions)
	Distance matrix for subjects/sessions contained in Y







Raises:


	Exception
	If the hmm has not been trained or if requested parameters do not exist
(e.g. if Mu is requested but state means were not estimated)
If kernel other than Fisher kernel is requested







Notes:

Does not include X and beta in kernel construction
Only Fisher kernel implemented at this point







	
glhmm.prediction.predict_phenotype(hmm, Y, behav, indices, predictor='Fisherkernel', estimator='KernelRidge', options=None)

	Predict phenotype from HMM
This uses either the Fisher kernel (default) or a set of HMM summary metrics
to predict a phenotype, in a nested cross-validated way.
By default, X and Y are standardised/centered unless deconfounding is used.
Estimators so far include: Kernel Ridge Regression and Ridge Regression
Cross-validation strategies so far include: KFold and GroupKFold
Hyperparameter optimization strategies so far include: only grid search


Parameters:


	hmmHMM object
	An instance of the HMM class, estimated on the group-level



	Yarray-like of shape (n_samples, n_variables_2)
	(group-level) timeseries data



	behavarray-like of shape (n_sessions,)
	phenotype, behaviour, or other external variable to be predicted



	indicesarray-like of shape (n_sessions, 2)
	The start and end indices of each trial/session in the input data.
Note that this function does not work if indices=None



	predictorchar (optional, default to ‘Fisherkernel’)
	What to predict from, either ‘Fisherkernel’ or ‘summary_metrics’ (default=’Fisherkernel’)



	estimatorchar (optional, default to ‘KernelRidge’)
	Model to be used for prediction (default=’KernelRidge’)
This should be the name of a sklearn base estimator
(for now either ‘KernelRidge’ or ‘Ridge’)



	optionsdict (optional, default to None)
	
	general relevant options are:
	‘CVscheme’: char, which CVscheme to use (default: ‘GroupKFold’ if group structure is specified, otherwise: KFold)
‘nfolds’: int, number of folds k for (outer and inner) k-fold CV loops
‘group_structure’: ndarray of (n_sessions, n_sessions), matrix specifying group structure: positive values if sessions(/subjects) are related, zeros otherwise
‘confounds’: array-like of shape (n_sessions,) or (n_sessions, n_confounds) containing confounding variables
‘return_scores’: bool, whether to return also the model scores of each fold
‘return_models’: bool, whether to return also the trained models of each fold
‘return_hyperparams’: bool, whether to return also the optimised hyperparameters of each fold
possible hyperparameters for model, e.g. ‘alpha’ for (kernel) ridge regression



	for Fisher kernel, relevant options are:
	‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO)
‘incl_Pi’: bool, whether to include the gradient w.r.t. the initial state probabilities when computing the Fisher kernel
‘incl_P’: bool, whether to include the gradient w.r.t. the transition probabilities
‘incl_Mu’: bool, whether to include the gradient w.r.t. the state means (note that this only works if means were not set to 0 when training HMM)
‘incl_Sigma’: bool, whether to include the gradient w.r.t. the state covariances



	for summary metrics, relevant options are:
	‘metrics’: list of char, containing metrics to be included as features











Returns:


	resultsdict
	containing
‘behav_pred’: predicted phenotype on test sets
‘corr’: correlation coefficient between predicted and actual values
(if requested):
‘scores’: the model scores of each fold
‘models’: the trained models from each fold
‘hyperparams’: the optimised hyperparameters of each fold







Raises:


	Exception
	If the hmm has not been trained or if necessary input is missing







Notes:

If behav contains NaNs, these subjects/sessions will be removed in Y and confounds







	
glhmm.prediction.reconfound(Y, conf, betaY, my)

	Reconfound






	
glhmm.prediction.test_classif(hmm, Y, indices, model_tuned, scaler_x, behav=None, train_indices=None, predictor='Fisherkernel', estimator='SVM', options=None)

	Test classification model from HMM
This uses either the Fisher kernel (default) or a set of HMM summary metrics
to make a classification, in a nested cross-validated way.
The specified predictor and estimator must be the same as the ones used to train the classifier.
By default, X is standardised/centered.
Note: When using a kernel method (e.g. Fisher kernel), Y must be the timeseries of both training and
test set to construct the correct kernel, and indices of the training sessions (train_indices)
must be provided. When using summary metrics, Y must be the timeseries of only the test set, and
train_indices should be None.


Parameters:


	hmmHMM object
	An instance of the HMM class, estimated on the group-level



	Yarray-like of shape (n_samples, n_variables_2)
	(group-level) timeseries data of test set



	indicesarray-like of shape (n_test_sessions, 2) or (n_sessions, 2)
	The start and end indices of each trial/session in the test data (when using features)
or in the train and test data (when using kernel).
Note that this function does not work if indices=None



	model_tunedestimator
	the trained and (if applicable) hyperparameter-optimised scikit-learn estimator



	scaler_xestimator
	the trained standard scaler/kernel centerer of the features/kernel x



	behavarray-like of shape (n_test_sessions,) (optional)
	phenotype, behaviour, or other external label of test set, to be compared with the predicted labels



	train_indicesarray-like of shape (n_train_sessions,) (optional, only use when using kernel)
	the indices of the sessions/subjects used for training. The function assumes that test indices are all other sessions.



	predictorchar (optional, default to ‘Fisherkernel’)
	What to predict from, either ‘Fisherkernel’ or ‘summary_metrics’ (default=’Fisherkernel’)



	estimatorchar (optional, default to ‘SVM’)
	Model to be used for classification (default=’SVM’)
This should be the name of a sklearn base estimator
(for now either ‘SVM’ or ‘LogisticRegression’)



	optionsdict (optional, default to None)
	
	general relevant options are:
	‘return_prob’: bool, whether to return also the estimated probabilities
‘return_models’: whether to return also the model



	for Fisher kernel, relevant options are:
	‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO)
‘incl_Pi’: bool, whether to include the gradient w.r.t. the initial state probabilities when computing the Fisher kernel
‘incl_P’: bool, whether to include the gradient w.r.t. the transition probabilities
‘incl_Mu’: bool, whether to include the gradient w.r.t. the state means (note that this only works if means were not set to 0 when training HMM)
‘incl_Sigma’: bool, whether to include the gradient w.r.t. the state covariances



	for summary metrics, relevant options are:
	‘metrics’: list of char, containing metrics to be included as features











Returns:


	resultsdict
	containing
‘behav_pred’: predicted labels on test sets
‘acc’: overall accuracy
(if requested):
‘behav_prob’: predicted probabilities of each class on test set
‘scores’: the model scores of each fold
‘models’: the trained model







Raises:


	Exception
	If the hmm has not been trained or if necessary input is missing











	
glhmm.prediction.test_pred(hmm, Y, indices, model_tuned, scaler_x, scaler_y=None, behav=None, train_indices=None, CinterceptY=None, CbetaY=None, predictor='Fisherkernel', estimator='KernelRidge', options=None)

	Test prediction model from HMM
This uses either the Fisher kernel (default) or a set of HMM summary metrics
to predict a phenotype, in a nested cross-validated way.
The specified predictor and estimator must be the same as the ones used to train the model.
By default, X and Y are standardised/centered unless deconfounding is used.
Note: When using a kernel method (e.g. Fisher kernel), Y must be the timeseries of both training and
test set to construct the correct kernel, and indices of the training sessions (train_indices)
must be provided. When using summary metrics, Y must be the timeseries of only the test set, and
train_indices should be None.
When using deconfounding, CinterceptY and CbetaY need to be specified


Parameters:


	hmmHMM object
	An instance of the HMM class, estimated on the group-level



	Yarray-like of shape (n_samples, n_variables_2)
	(group-level) timeseries data of test set



	indicesarray-like of shape (n_test_sessions, 2) or (n_sessions, 2)
	The start and end indices of each trial/session in the test data (when using features)
or in the train and test data (when using kernel).
Note that this function does not work if indices=None



	model_tunedestimator
	the trained and (if applicable) hyperparameter-optimised scikit-learn estimator



	scaler_xestimator
	the trained standard scaler/kernel centerer of the features/kernel x



	scaler_yestimator (optional, only specify when not using deconfounding)
	the trained standard scaler of the variable to be predicted y.



	behavarray-like of shape (n_test_sessions,) (optional)
	phenotype, behaviour, or other external variable of test set, to be compared with the predicted values



	train_indicesarray-like of shape (n_train_sessions,) (optional, only use when using kernel)
	the indices of the sessions/subjects used for training. The function assumes that test indices are all other sessions.



	CinterceptYfloat (optional, only specify when using deconfounding)
	the estimated intercept for deconfounding



	CbetaYarray-like of shape (n_confounds) (optional, only specify when using deconfounding)
	the estimated beta weights for deconfounding of each confound



	predictorchar (optional, default to ‘Fisherkernel’)
	What to predict from, either ‘Fisherkernel’ or ‘summary_metrics’ (default=’Fisherkernel’)



	estimatorchar (optional, default to ‘KernelRidge’)
	Model to be used for prediction (default=’KernelRidge’)
This should be the name of a sklearn base estimator
(for now either ‘KernelRidge’ or ‘Ridge’)



	optionsdict (optional, default to None)
	
	general relevant options are:
	‘confounds’: array-like of shape (n_test_sessions,) or (n_test_sessions, n_confounds) containing confounding variables
‘return_models’: whether to return also the model



	for Fisher kernel, relevant options are:
	‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO)
‘incl_Pi’: bool, whether to include the gradient w.r.t. the initial state probabilities when computing the Fisher kernel
‘incl_P’: bool, whether to include the gradient w.r.t. the transition probabilities
‘incl_Mu’: bool, whether to include the gradient w.r.t. the state means (note that this only works if means were not set to 0 when training HMM)
‘incl_Sigma’: bool, whether to include the gradient w.r.t. the state covariances



	for summary metrics, relevant options are:
	‘metrics’: list of char, containing metrics to be included as features











Returns:


	resultsdict
	containing
‘behav_pred’: predicted phenotype on test sets
(if behav was specified):
‘corr’: correlation coefficient between predicted and actual values
‘scores’: the model scores of each fold
(if requested):
‘model’: the trained model







Raises:


	Exception
	If the hmm has not been trained or if necessary input is missing











	
glhmm.prediction.train_classif(hmm, Y, behav, indices, predictor='Fisherkernel', estimator='SVM', options=None)

	Train classification model from HMM
This uses either the Fisher kernel (default) or a set of HMM summary metrics
to make a classification, in a nested cross-validated way.
By default, X is standardised/centered.
Note that all outputs need to be passed on to test_classif to ensure that training and test variables are preprocessed in the same way,
while avoiding leakage between training and test set.
Estimators so far include: SVM and Logistic Regression
Cross-validation strategies so far include: KFold and GroupKFold
Hyperparameter optimization strategies so far include: grid search, no hyperparameter optimisation


Parameters:


	hmmHMM object
	An instance of the HMM class, estimated on the group-level



	Yarray-like of shape (n_samples, n_variables_2)
	(group-level) timeseries data of training set



	behavarray-like of shape (n_train_sessions,)
	phenotype, behaviour, or other external labels of training set to be predicted



	indicesarray-like of shape (n_train_sessions, 2)
	The start and end indices of each trial/session in the training set.
Note that this function does not work if indices=None



	predictorchar (optional, default to ‘Fisherkernel’)
	What to predict from, either ‘Fisherkernel’ or ‘summary_metrics’ (default=’Fisherkernel’)



	estimatorchar (optional, default to ‘SVM’)
	Model to be used for classification (default=’SVM’)
This should be the name of a sklearn base estimator
(for now either ‘SVM’ or ‘LogisticRegression’)



	optionsdict (optional, default to None)
	
	general relevant options are:
	
	‘optim_hyperparam’char, which hyperparameter optimisation strategy to use (default: ‘GridSearchCV’).
	If you don’t want to use hyperparameter optimisation, set this to None and specify the hyperparameter (alpha) as an option
When using hyperparameter optimisation, additional relevant options are:


‘CVscheme’: char, which CVscheme to use (default: ‘GroupKFold’ if group structure is specified, otherwise: KFold)
‘nfolds’: int, number of folds k for (outer and inner) k-fold CV loops
‘group_structure’: ndarray of (n_train_sessions, n_train_sessions), matrix specifying group structure: positive values if samples are related, zeros otherwise








possible hyperparameters for model, e.g. ‘C’ for SVM
‘return_prob’: bool, whether to also estimate the probabilities



	for Fisher kernel, relevant options are:
	‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO)
‘incl_Pi’: bool, whether to include the gradient w.r.t. the initial state probabilities when computing the Fisher kernel
‘incl_P’: bool, whether to include the gradient w.r.t. the transition probabilities
‘incl_Mu’: bool, whether to include the gradient w.r.t. the state means (note that this only works if means were not set to 0 when training HMM)
‘incl_Sigma’: bool, whether to include the gradient w.r.t. the state covariances



	for summary metrics, relevant options are:
	‘metrics’: list of char, containing metrics to be included as features











Returns:


	model_tunedestimator
	the trained and (if applicable) hyperparameter-optimised scikit-learn estimator



	scaler_xestimator
	the trained standard scaler/kernel centerer of the features/kernel x







Raises:


	Exception
	If the hmm has not been trained or if necessary input is missing







Notes:

If behav contains NaNs, these subjects/sessions will be removed







	
glhmm.prediction.train_pred(hmm, Y, behav, indices, predictor='Fisherkernel', estimator='KernelRidge', options=None)

	Train prediction model from HMM
This uses either the Fisher kernel (default) or a set of HMM summary metrics
to predict a phenotype, in a nested cross-validated way.
By default, X and Y are standardised/centered unless deconfounding is used.
Note that all outputs except behavD, i.e. model and scalers, need to be passed on to test_pred to ensure that training and test variables are preprocessed in the same way,
while avoiding leakage between training and test set.
Estimators so far include: Kernel Ridge Regression and Ridge Regression
Cross-validation strategies so far include: KFold and GroupKFold
Hyperparameter optimization strategies so far include: grid search, no hyperparameter optimisation


Parameters:


	hmmHMM object
	An instance of the HMM class, estimated on the group-level



	Yarray-like of shape (n_samples, n_variables_2)
	(group-level) timeseries data of training set



	behavarray-like of shape (n_train_sessions,)
	phenotype, behaviour, or other external variable of training set



	indicesarray-like of shape (n_train_sessions, 2)
	The start and end indices of each trial/session in the training data.
Note that this function does not work if indices=None



	predictorchar (optional, default to ‘Fisherkernel’)
	What to predict from, either ‘Fisherkernel’ or ‘summary_metrics’ (default=’Fisherkernel’)



	estimatorchar (optional, default to ‘KernelRidge’)
	Model to be used for prediction (default=’KernelRidge’)
This should be the name of a sklearn base estimator
(for now either ‘KernelRidge’ or ‘Ridge’)



	optionsdict (optional, default to None)
	
	general relevant options are:
	
	‘optim_hyperparam’char, which hyperparameter optimisation strategy to use (default: ‘GridSearchCV’).
	If you don’t want to use hyperparameter optimisation, set this to None and specify the hyperparameter (alpha) as an option
When using hyperparameter optimisation, additional relevant options are:


‘CVscheme’: char, which CVscheme to use (default: ‘GroupKFold’ if group structure is specified, otherwise: KFold)
‘nfolds’: int, number of folds k for (outer and inner) k-fold CV loops
‘group_structure’: ndarray of (n_train_sessions, n_train_sessions), matrix specifying group structure: positive values if samples are related, zeros otherwise








‘confounds’: array-like of shape (n_train_sessions,) or (n_train_sessions, n_confounds) containing confounding variables
possible hyperparameters for model, e.g. ‘alpha’ for (kernel) ridge regression



	for Fisher kernel, relevant options are:
	‘shape’: char, either ‘linear’ or ‘Gaussian’ (TO DO)
‘incl_Pi’: bool, whether to include the gradient w.r.t. the initial state probabilities when computing the Fisher kernel
‘incl_P’: bool, whether to include the gradient w.r.t. the transition probabilities
‘incl_Mu’: bool, whether to include the gradient w.r.t. the state means (note that this only works if means were not set to 0 when training HMM)
‘incl_Sigma’: bool, whether to include the gradient w.r.t. the state covariances



	for summary metrics, relevant options are:
	‘metrics’: list of char, containing metrics to be included as features











Returns:


	model_tunedestimator
	the trained and (if applicable) hyperparameter-optimised scikit-learn estimator



	scaler_xestimator
	the trained standard scaler/kernel centerer of the features/kernel x





(if not using deconfounding):
scaler_y : estimator


the trained standard scaler of the variable to be predicted y.




(if using deconfounding):
CinterceptY : float


the estimated intercept for deconfounding





	CbetaYarray-like of shape (n_confounds)
	the estimated beta weights for deconfounding of each confound



	behavDarray-like of shape (n_train_sessions)
	the phenotype/behaviour in deconfounded space







Raises:


	Exception
	If the hmm has not been trained or if necessary input is missing







Notes:

If behav contains NaNs, these subjects/sessions will be removed in Y and confounds
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glhmm.statistics.calculate_baseline_difference(vpath_array, R_data, state, pairwise_statistic)

	Calculate the difference between the specified statistics of a state and all other states combined.


Parameters:


vpath_data (numpy.ndarray): The Viterbi path as of integer values that range from 1 to n_states.
R_data (numpy.ndarray):     The dependent-variable associated with each state.
state(numpy.ndarray):       the state for which the difference is calculated.
pairwise_statistic (str)             The chosen statistic to be calculated. Valid options are “mean” or “median”.






Returns:


difference (float)            the calculated difference between the specified state and all other states combined.










	
glhmm.statistics.calculate_geometric_pval(p_values, test_combination)

	Calculate test statistics of z-scores converted from p-values based on the specified combination.


Parameters:


p_values (numpy.ndarray):  Matrix of p-values.
test_combination (str):       Specifies the combination method.


Valid options: “True”, “across_columns”, “across_rows”.
Default is “True”.









Returns:


result (numpy.ndarray):       Test statistics of z-scores converted from p-values.










	
glhmm.statistics.calculate_nan_correlation_matrix(D_data, R_data, test_combination=False, reduce_pval_dims=False)

	Calculate the correlation matrix between independent variables (D_data) and dependent variables (R_data),
while handling NaN values column by column of dimension p without  without removing entire rows.


Parameters:


D_data (numpy.ndarray): Input data matrix for the independent variables.
R_data (numpy.ndarray): Input data matrix for the dependent variables.






Returns:


correlation_matrix (numpy.ndarray): Correlation matrix between columns in D_data and R_data.










	
glhmm.statistics.calculate_nan_f_test(D_data, R_column, nan_values=False)

	
	Calculate F-statistics for each feature of D_data against categories in R_data, while handling NaN values column by column without removing entire rows.
	
	The function handles NaN values for each feature in D_data without removing entire rows.


	NaN values are omitted on a feature-wise basis, and the F-statistic is calculated for each feature.


	The resulting array contains F-statistics corresponding to each feature in D_data.









Parameters:


D_data (numpy.ndarray): The input matrix of shape (n_samples, n_features).
R_column (numpy.ndarray): The categorical labels corresponding to each sample in D_data.






Returns:


f_test (numpy.ndarray): An array containing F-statistics for each feature in D_data against the categories in R_data.










	
glhmm.statistics.calculate_nan_regression(Din, Rin, proj)

	Calculate the R-squared values for the regression of each dependent variable
in Rin on the independent variables in Din, while handling NaN values column-wise.


Parameters:


Din (numpy.ndarray): Input data matrix for the independent variables.
Rin (numpy.ndarray): Input data matrix for the dependent variables.
proj (numpy.ndarray): Projection matrix.






Returns:


R2_test (numpy.ndarray): Array of R-squared values for each regression.










	
glhmm.statistics.calculate_nan_regression_f_test(Din, Rin, proj, nan_values=False)

	Calculate the f-test values for the regression of each dependent variable
in Rin on the independent variables in Din, while handling NaN values column-wise.


Parameters:


Din (numpy.ndarray): Input data matrix for the independent variables.
Rin (numpy.ndarray): Input data matrix for the dependent variables.
proj (numpy.ndarray): Projection matrix.






Returns:


R2_test (numpy.ndarray): Array of f-test values for each regression.










	
glhmm.statistics.calculate_nan_t_test(D_data, R_column, nan_values=False)

	
	Calculate the t-statistics between paired independent (D_data) and dependent (R_data) variables, while handling NaN values column by column without removing entire rows.
	
	The function handles NaN values for each feature in D_data without removing entire rows.


	NaN values are omitted on a feature-wise basis, and the t-statistic is calculated for each feature.


	The resulting array contains t-statistics corresponding to each feature in D_data.









Parameters:


D_data (numpy.ndarray): The input matrix of shape (n_samples, n_features).
R_column (numpy.ndarray): The binary labels corresponding to each sample in D_data.






Returns:


t_test (numpy.ndarray): An array containing t-statistics for each feature in D_data against the binary categories in R_data.










	
glhmm.statistics.calculate_statepair_difference(vpath_array, R_data, state_1, state_2, stat)

	Calculate the difference between the specified statistics of two states.


Parameters:


vpath_data (numpy.ndarray): The Viterbi path as of integer values that range from 1 to n_states.
R_data (numpy.ndarray):     The dependent-variable associated with each state.
state_1 (int):              First state for comparison.
state_2 (int):              Second state for comparison.
statistic (str):            The chosen statistic to be calculated. Valid options are “mean” or “median”.






Returns:


difference (float):           The calculated difference between the two states.










	
glhmm.statistics.deconfound_values(D_data, R_data, confounds=None)

	Deconfound the variables R_data and D_data for permutation testing.


Parameters:


D_data  (numpy.ndarray): The input data array.
R_data (numpy.ndarray or None): The second input data array (default: None).


If None, assumes we are working across visits, and R_data represents the Viterbi path of a sequence.




confounds (numpy.ndarray or None): The confounds array (default: None).






Returns:


numpy.ndarray: Deconfounded D_data  array.
numpy.ndarray: Deconfounded R_data array (returns None if R_data is None).


If R_data is None, assumes we are working across visits













	
glhmm.statistics.detect_significant_intervals(pval, alpha)

	Detect intervals of consecutive True values in a boolean array.


	Parameters:

	
	p_values (numpy.ndarray) – An array of p-values.


	alpha (float, optional) – Threshold for significance (Default=0.05).


	Returns – 


	---------- – 


	tuple (list of) – (inclusive) of each interval of consecutive True values.


	Example – array = [False, False, False, True, True, True, False, False, True, True, False]
detect_intervals(array)
output: [(3, 5), (8, 9)]













	
glhmm.statistics.generate_vpath_1D(vpath)

	Convert a 2D array representing a matrix with one non-zero element in each row
into a 1D array where each element is the column index of the non-zero element.


	Parameters:

	vpath (numpy.ndarray) – A 2D array where each row has only one non-zero element.
Or a 1D array where each row represents a sate number



	Returns:

	
	A 1D array containing the column indices of the non-zero elements.
	If the input array is already 1D, it returns a copy of the input array.









	Return type:

	vpath_array(numpy.ndarray)










	
glhmm.statistics.get_concatenate_sessions(D_sessions, R_sessions, idx_sessions)

	Converts a  3D matrix into a 2D matrix by concatenating timepoints of every trial session into a new design matrix.


Parameters:


D_sessions (numpy.ndarray): Design matrix for each session.
R_sessions (numpy.ndarray): R  matrix time for each trial.
idx_sessions (numpy.ndarray): Indices representing the start and end of trials for each session.






Returns:


D_con (numpy.ndarray): Concatenated design matrix.
R_con (numpy.ndarray): Concatenated R matrix.
idx_sessions_con (numpy.ndarray): Updated indices after concatenation.










	
glhmm.statistics.get_indices_array(idx_data)

	Generates an indices array based on given data indices.


Parameters:


idx_data (numpy.ndarray): The data indices array.






Returns:


idx_array (numpy.ndarray): The generated indices array.










	
glhmm.statistics.get_indices_from_list(data_list, count_timestamps=True)

	Generate indices representing the start and end timestamps for each subject or session from a given data list.


Parameters:


data_list (list): List containing data for each subject or session.
count_timestamps (bool): If True, counts timestamps for each element in data_list, otherwise assumes each element in data_list is already a count of timestamps.






Returns:


indices (ndarray): NumPy array with start and end indices for each subject’s timestamps.










	
glhmm.statistics.get_input_shape(D_data, R_data, verbose)

	Computes the input shape parameters for permutation testing.


Parameters:


D_data (numpy.ndarray): The input data array.
R_data (numpy.ndarray): The dependent variable.
verbose (bool): If True, display progress messages. If False, suppress progress messages.






Returns:


n_T (int): The number of timepoints.
n_ST (int): The number of subjects or trials.
n_p (int): The number of features.
D_data (numpy.ndarray): The updated input data array.
R_data (numpy.ndarray): The updated dependent variable.










	
glhmm.statistics.get_pval(test_statistics, Nperm, method, t, pval, FWER_correction=False, test_combination=False)

	Computes p-values and correlation matrix for permutation testing.


Parameters:


test_statistics (numpy.ndarray): The permutation array.
pval_perms (numpy.ndarray): The p-value permutation array.
Nperm (int): The number of permutations.
method (str): The method used for permutation testing.
t (int): The timepoint index.
pval (numpy.ndarray): The p-value array.






Returns:


pval (numpy.ndarray): Updated updated p-value .




# Ref: https://github.com/OHBA-analysis/HMM-MAR/blob/master/utils/testing/permtest_aux.m







	
glhmm.statistics.get_session_indices(data_label)

	Generate session indices in the data based on provided labels.
This is done by using ‘data_label’ to define sessions and generates corresponding indices.
The resulting ‘idx_data_sessions’ array represents the intervals for each session in the data.


Parameters:


data_label (ndarray): NumPy array representing the labels for data to be indexed into sessions.






Returns:



	idx_data_sessions (ndarray): The indices of datapoints within each session. It should be a 2D array
	where each row represents the start and end index for a trial.








Example:
get_session_indices(np.array([1, 1, 2, 2, 2, 3, 3, 3, 3]))
array([[0, 2],


[2, 5],
[5, 9]])










	
glhmm.statistics.get_timestamp_indices(n_timestamps, n_subjects)

	Generate indices of the timestamps for each subject in the data.


Parameters:


n_timestamps (int): Number of timestamps.
n_subjects (int): Number of subjects.






Returns:


indices (ndarray): NumPy array representing the indices of the timestamps for each subject.




Example:
get_timestamp_indices(5, 3)
array([[ 0,  5],


[ 5, 10],
[10, 15]])










	
glhmm.statistics.identify_coloumns_for_t_and_f_tests(R_data, method, identify_categories=True, category_lim=None)

	Detect columns in R_data that are categorical. Used to detect which columns to perm t-statistics and F-statistics for later analysis.


Parameters:


	R_datanumpy.ndarray
	The 3D array containing categorical values.



	identify_categoriesbool or list or numpy.ndarray, optional, default=True
	If True, automatically identify categorical columns. If list or ndarray, use the provided list of column indices.



	methodstr, optional, default=”univariate”
	The method to perform the tests. Only “univariate” is currently supported.



	category_limint or None, optional, default=None
	Maximum allowed number of categories for F-test. Acts as a safety measure for columns
with integer values, like age, which may be mistakenly identified as multiple categories.







Returns:


	dict
	A dictionary containing the columns for t-test (“t_test_cols”) and F-test (“f_test_cols”).





Note: The function modifies the input dictionary category_columns in place.







	
glhmm.statistics.initialize_arrays(R_data, n_p, n_q, n_T, method, Nperm, test_statistics_option, test_combination=False)

	




	
glhmm.statistics.initialize_permutation_matrices(method, Nperm, n_p, n_q, D_data, test_combination=False)

	Initializes the permutation matrices and projection matrix for permutation testing.


Parameters:


method (str): The method to use for permutation testing.
Nperm (int): The number of permutations.
n_p (int): The number of features.
n_q (int): The number of predictions.
D_data (numpy.ndarray): The independent variable.






Returns:


test_statistics (numpy.ndarray): The permutation array.
pval_perms (numpy.ndarray): The p-value permutation array.
proj (numpy.ndarray or None): The projection matrix (None for correlation methods).










	
glhmm.statistics.permutation_matrix_across_subjects(Nperm, D_t)

	Generates a normal permutation matrix with the assumption that each index is independent across subjects.


Parameters:


Nperm (int): The number of permutations.
D_t (numpy.ndarray): The preprocessed data array.






Returns:


permutation_matrix (numpy.ndarray): Permutation matrix of subjects it got a shape (n_ST, Nperm)










	
glhmm.statistics.permutation_matrix_across_trials_within_session(Nperm, R_t, idx_array, trial_timepoints=None)

	Generates permutation matrix of within-session across-trial data based on given indices.


Parameters:


Nperm (int): The number of permutations.
R_t (numpy.ndarray): The preprocessed data array.
idx_array (numpy.ndarray): The indices array.
trial_timepoints (int): Number of timepoints for each trial (default: None)






Returns:


permutation_matrix (numpy.ndarray): Permutation matrix of subjects it got a shape (n_ST, Nperm)










	
glhmm.statistics.permutation_matrix_within_subject_across_sessions(Nperm, D_t, idx_array)

	Generates permutation matrix of within-session across-session data based on given indices.


Parameters:


Nperm (int): The number of permutations.
D_t (numpy.ndarray): The preprocessed data array.
idx_array (numpy.ndarray): The indices array.






Returns:


permutation_matrix (numpy.ndarray): The within-session continuos indices array.










	
glhmm.statistics.permute_subject_trial_idx(idx_array)

	Permutes an array based on unique values while maintaining the structure.


Parameters:


idx_array (numpy.ndarray): Input array to be permuted.






Returns:


list: Permuted array based on unique values.










	
glhmm.statistics.process_family_structure(dict_family, Nperm)

	Process a dictionary containing family structure information.


Parameters:



	dict_family (dict): Dictionary containing family structure information.
	file_location (str): The file location of the family structure data in CSV format.
M (numpy.ndarray, optional): The matrix of attributes, which is not typically required.


Defaults to None.




nP (int): The number of permutations to generate.
CMC (bool, optional): A flag indicating whether to use the Conditional Monte Carlo method (CMC).


Defaults to False.





	EE (bool, optional): A flag indicating whether to assume exchangeable errors, which allows permutation.
	Defaults to True.









Nperm (int): Number of permutations.






Returns:



	dict_mfam (dict): Modified dictionary with processed values.
	EB (numpy.ndarray): Block structure representing relationships between subjects.
M (numpy.ndarray, optional): The matrix of attributes, which is not typically required.


Defaults to None.




nP (int): The number of permutations to generate.
CMC (bool, optional): A flag indicating whether to use the Conditional Monte Carlo method (CMC).


Defaults to False.





	EE (bool, optional): A flag indicating whether to assume exchangeable errors, which allows permutation.
	Defaults to True.


















	
glhmm.statistics.pval_cluster_based_correction(test_statistics, pval, alpha=0.05)

	Perform cluster-based correction on test statistics using the output from permutation testing.
The function corrects p-values by using the test statistics and p-values obtained from permutation testing.
It converts the test statistics into z-based statistics, allowing to threshold and identify cluster sizes.
The p-value map from permutation testing results is then thresholded using the cluster size derived from z-based statistics.


	Parameters:

	
	test_statistics ((numpy.ndarray)) – 2D or 3D array of test statistics. 2D if you have applied permutation testing using “regression”.


	pval ((numpy.ndarray)) – 2D or 1D array of p-values obtained from permutation testing. 1D if you have applied permutation testing using “regression”.


	alpha ((float, optional)) – Significance level for cluster-based correction (Defaults=0.05).






	Returns:

	p_values – Corrected p-values after cluster-based correction.



	Return type:

	(numpy.ndarray)










	
glhmm.statistics.pval_correction(pval, method='fdr_bh', alpha=0.05, include_nan=True, nan_diagonal=False)

	Adjusts p-values for multiple testing.


Parameters:


pval (numpy.ndarray): numpy array of p-values.
method (str, optional): method used for FDR correction (default: ‘fdr_bh).


bonferroni : one-step correction
sidak : one-step correction
holm-sidak : step down method using Sidak adjustments
holm : step-down method using Bonferroni adjustments
simes-hochberg : step-up method (independent)
hommel : closed method based on Simes tests (non-negative)
fdr_bh : Benjamini/Hochberg (non-negative)
fdr_by : Benjamini/Yekutieli (negative)
fdr_tsbh : two stage fdr correction (non-negative)
fdr_tsbky : two stage fdr correction (non-negative)




alpha (float, optional): Significance level (default: 0.05).
include_nan: Include NaN values during the correction of p-values if True. Exclude NaN values if False (default: True).
nan_diagonal: Add NaN values to the diagonal if True (default: False).






Returns:


pval_corrected (numpy.ndarray): numpy array of corrected p-values.
significant (numpy.ndarray): numpy array of boolean values indicating significant p-values.










	
glhmm.statistics.reconstruct_concatenated_design(D_con, D_sessions=None, n_timepoints=None, n_trials=None, n_channels=None)

	Reconstructs the concatenated design matrix to the original session variables.


Parameters:


D_con (numpy.ndarray): Concatenated design matrix.
D_sessions (numpy.ndarray, optional): Original design matrix for each session.
n_timepoints (int, optional): Number of timepoints per trial.
n_trials (int, optional): Number of trials per session.
n_channels (int, optional): Number of channels.






Returns:


D_reconstruct (numpy.ndarray): Reconstructed design matrix for each session.










	
glhmm.statistics.remove_nan_values(D_data, R_data, t, n_T, method)

	Remove rows with NaN values from input data arrays.


	Parameters:

	
	D_data (numpy.ndarray) – Input data array containing features.


	R_data (numpy.ndarray) – Input data array containing response values.


	t (int) – Timepoint of the data


	n_T (int) – Total number of timepoint of the data






	Returns:

	
	D_data (numpy.ndarray) – Cleaned feature data (D_data) with NaN values removed.


	R_data (numpy.ndarray) – Cleaned response data (R_data) with NaN values removed.















	
glhmm.statistics.surrogate_state_time(perm, viterbi_path, n_states)

	Generates surrogate state-time matrix based on a given Viterbi path.


Parameters:


perm (int): The permutation number.
viterbi_path (numpy.ndarray): 1D array or 2D matrix containing the Viterbi path.
n_states (int): The number of states






Returns:


viterbi_path_surrogate (numpy.ndarray): A 1D array representing the surrogate Viterbi path










	
glhmm.statistics.surrogate_viterbi_path(viterbi_path, n_states)

	Generate surrogate Viterbi path based on state-time matrix.


Parameters:


viterbi_path (numpy.ndarray):   1D array or 2D matrix containing the Viterbi path.
n_states (int):                 Number of states in the hidden Markov model.






Returns:



	viterbi_path_surrogate (numpy.ndarray): Surrogate Viterbi path as a 1D array representing the state indices.
	The number of states in the array varies from 1 to n_states














	
glhmm.statistics.test_across_sessions_within_subject(D_data, R_data, idx_data, method='regression', Nperm=0, confounds=None, verbose=True, test_statistics_option=False, FWER_correction=False, identify_categories=False, category_lim=10, test_combination=False)

	This function performs statistical tests between a independent variable (D_data) and the dependent-variable (R_data) using permutation testing.
The permutation testing is performed across sessions within the same subject, while keeping the trial order the same.
This procedure is particularly valuable for investigating the effects of long-term treatments or monitoring changes in brain responses across sessions over time.


	Three options are available to customize the statistical analysis to a particular research questions:
	
	‘regression’: Perform permutation testing using regression analysis.


	‘correlation’: Conduct permutation testing with correlation analysis.


	‘cca’: Apply permutation testing using canonical correlation analysis.









Parameters:



	D_data (numpy.ndarray): Input data array of shape that can be either a 2D array or a 3D array.
	For 2D array, it got a shape of (n, p), where n_ST represent
the number of subjects, and each column represents a feature (e.g., brain region).
For a 3D array,it got a shape (T, n, p), where the first dimension
represents timepoints, the second dimension represents the number of trials,
and the third dimension represents features/predictors.



	R_data (numpy.ndarray): The dependent-variable can be either a 2D array or a 3D array.
	For 2D array, it got a shape of (n, q), where n represent
the number of trials, and q represents the outcome/dependent variable
For a 3D array,it got a shape (T, n, q), where the first dimension
represents timepoints, the second dimension represents the number of trials,
and the third dimension represents a dependent variable



	idx_data (numpy.ndarray): The indices for each trial within the session. It should be a 2D array where each row
	represents the start and end index for a trial.



	method (str, optional): The statistical method to be used for the permutation test. Valid options are
	“regression”, “univariate”, or “cca”. (default: “regression”).
Note: “cca” stands for Canonical Correlation Analysis





Nperm (int): Number of permutations to perform (default: 1000).
confounds (numpy.ndarray or None, optional):


The confounding variables to be regressed out from the input data (D_data).
If provided, the regression analysis is performed to remove the confounding effects.
(default: None):





	verbose (bool, optional):
	If True, display progress messages and prints. If False, suppress messages.



	test_statistics_option (bool, optional):
	If True, the function will return the test statistics for each permutation.
(default: False)



	FWER_correction (bool, optional):
	Specify whether to perform family-wise error rate (FWER) correction for multiple comparisons using the MaxT method(default: False).
Note: FWER_correction is not necessary if pval_correction is applied later for multiple comparison p-value correction.



	identify_categoriesbool or list or numpy.ndarray, optional, default=True
	If True, automatically identify categorical columns. If list or ndarray, use the provided list of column indices.



	category_limint or None, optional, default=None
	Maximum allowed number of categories for F-test. Acts as a safety measure for columns
with integer values, like age, which may be mistakenly identified as multiple categories.



	test_combination:       Calculates geometric means of p-values using permutation testing (default: False). Valid options are:
	
	True (bool): Return a single geometric mean per time point.


	“across_rows” (str): Calculate geometric means for each row.


	“across_columns” (str): Calculate geometric means for each column.













Returns:



	result (dict): A dictionary containing the following keys. Depending on the test_statistics_option and method, it can return the p-values,
	correlation coefficients, test statisticss.
‘pval’: P-values for the test with shapes based on the method:



	method==”Regression”: (T, p)


	method==”univariate”: (T, p, q)


	method==”cca”: (T, 1)








	‘test_statistics’: test statistics is the permutation distribution if test_statistics_option is True, else None.
	
	method==”Regression”: (T, Nperm, p)


	method==”univariate”: (T, Nperm, p, q)


	method==”cca”: (T, Nperm, 1)








‘base_statistics’: Correlation coefficients for the test with shape (T, p, q) if method==”univariate”, else None.
‘test_type’: the type of test, which is the name of the function
‘method’: the method used for analysis Valid options are


“regression”, “univariate”, or “cca”, “one_vs_rest” and “state_pairs” (default: “regression”).




‘max_correction’: Specifies if FWER has been applied using MaxT, can either output True or False.
‘Nperm’ :The number of permutations that has been performed.









Note

The function automatically determines whether permutation testing is performed per timepoint for each subject or
for the whole data based on the dimensionality of D_data.
The function assumes that the number of rows in D_data and R_data are equal









	
glhmm.statistics.test_across_subjects(D_data, R_data, method='regression', Nperm=0, confounds=None, dict_family=None, verbose=True, test_statistics_option=False, FWER_correction=False, identify_categories=False, category_lim=10, test_combination=False)

	This function performs statistical tests between a independent variable (D_data) and the dependent-variable (R_data) using permutation testing.
The permutation testing is performed across across different subjects and it is possible to take family structure into account.
This procedure is particularly valuable for investigating the differences between subjects in one’s study.


	Three options are available to customize the statistical analysis to a particular research questions:
	
	“regression”: Perform permutation testing using regression analysis.


	“univariate”: Conduct permutation testing with correlation analysis.


	“cca”: Apply permutation testing using canonical correlation analysis.









Parameters:


	D_data (numpy.ndarray): Input data array of shape that can be either a 2D array or a 3D array.
	For 2D, the data is represented as a (n, p) matrix, where n represents
the number of subjects, and p represents the number of predictors.
For 3D array, it has a shape (T, n, q), where the first dimension
represents timepoints, the second dimension represents the number of subjects,
and the third dimension represents features.
For 3D, permutation testing is performed per timepoint for each subject.



	R_data (numpy.ndarray): The dependent variable can be either a 2D array or a 3D array.
	For 2D array, it has a shape of (n, q), where n represents
the number of subjects, and q represents the outcome of the dependent variable.
For 3D array, it has a shape (T, n, q), where the first dimension
represents timepoints, the second dimension represents the number of subjects,
and the third dimension represents a dependent variable.
For 3D, permutation testing is performed per timepoint for each subject.



	method (str, optional): The statistical method to be used for the permutation test. Valid options are
	“regression”, “univariate”, or “cca”. (default: “regression”).
Note: “cca” stands for Canonical Correlation Analysis





Nperm (int): Number of permutations to perform (default: 1000).
confounds (numpy.ndarray or None, optional):


The confounding variables to be regressed out from the input data (D_data).
If provided, the regression analysis is performed to remove the confounding effects.
(default: None)





	dict_family (dict):
	
	Dictionary containing family structure information.
	
	file_location (str): The file location of the family structure data in CSV format.


	
	M (numpy.ndarray, optional): The matrix of attributes, which is not typically required.
	Defaults to None.







	
	CMC (bool, optional): A flag indicating whether to use the Conditional Monte Carlo method (CMC).
	Defaults to False.







	
	EE (bool, optional): A flag indicating whether to assume exchangeable errors, which allows permutation.
	Defaults to True. Other options are not available.















	verbose (bool, optional):
	If True, display progress messages. If False, suppress progress messages.



	test_statistics_option (bool, optional):
	If True, the function will return the test statistics for each permutation.
(default: False)



	FWER_correction (bool, optional):
	Specify whether to perform family-wise error rate (FWER) correction using the MaxT method (default: False)
Note: FWER_correction is not necessary if pval_correction is applied later for multiple comparison p-value correction.



	identify_categoriesbool or list or numpy.ndarray, optional, default=True
	If True, automatically identify categorical columns. If list or ndarray, use the provided list of column indices.



	category_limint or None, optional, default=10
	Maximum allowed number of categories for F-test. Acts as a safety measure for columns
with integer values, like age, which may be mistakenly identified as multiple categories.



	test_combination:       Calculates geometric means of p-values using permutation testing (default: False).
	In the context of p-values from permutation testing, calculating geometric means
can be useful for summarizing results across multiple tests to get insights into the overall
statistical significance across experimental conditions.
Valid options are:



	True (bool): Return a single geometric mean value.


	“across_rows” (str): Calculates geometric means aggregated across rows.


	“across_columns” (str): Calculates geometric means aggregated across columns.













Returns:


	result (dict): A dictionary containing the following keys. Depending on the test_statistics_option and method, it can return the p-values,
	correlation coefficients, test statisticss.
‘pval’: P-values for the test with shapes based on the method:



	method==”Regression”: (T, p)


	method==”univariate”: (T, p, q)


	method==”cca”: (T, 1)








	‘test_statistics’: test statistics is the permutation distribution if test_statistics_option is True, else None.
	
	method==”Regression”: (T, Nperm, p)


	method==”univariate”: (T, Nperm, p, q)


	method==”cca”: (T, Nperm, 1)








‘base_statistics’: Correlation coefficients for the test with shape (T, p, q) if method==”univariate”, else None.
‘test_type’: the type of test, which is the name of the function
‘method’: the method used for analysis Valid options are


“regression”, “univariate”, or “cca”, “one_vs_rest” and “state_pairs” (default: “regression”).




‘max_correction’: Specifies if FWER has been applied using MaxT, can either output True or False.
‘performed_tests’: A dictionary that marks the columns in the test_statistics or p-value matrix corresponding to the (q dimension) where t-tests or F-tests have been performed.
‘Nperm’ :The number of permutations that has been performed.





Note:
The function automatically determines whether permutation testing is performed per timepoint for each subject or
for the whole data based on the dimensionality of D_data.
The function assumes that the number of rows in D_data and R_data are equal







	
glhmm.statistics.test_across_trials_within_session(D_data, R_data, idx_data, method='regression', Nperm=0, confounds=None, trial_timepoints=None, verbose=True, test_statistics_option=False, FWER_correction=False, identify_categories=False, category_lim=10, test_combination=False)

	This function performs statistical tests between a independent variable (D_data) and the dependent-variable (R_data) using permutation testing.
The permutation testing is performed across different trials within a session using permutation testing
This procedure is particularly valuable for investigating the differences between trials in one or more sessions.
An example could be if we want to test if any learning is happening during a session that might speed up times.


	Three options are available to customize the statistical analysis to a particular research questions:
	
	‘regression’: Perform permutation testing using regression analysis.


	‘correlation’: Conduct permutation testing with correlation analysis.


	‘cca’: Apply permutation testing using canonical correlation analysis.









Parameters:



	D_data (numpy.ndarray): Input data array of shape that can be either a 2D array or a 3D array.
	For 2D array, it got a shape of (n, p), where n represent
the number of trials, and p represents the number of predictors (e.g., brain region)
For a 3D array,it got a shape (T, n, p), where the first dimension
represents timepoints, the second dimension represents the number of trials,
and the third dimension represents features/predictors.
In the latter case, permutation testing is performed per timepoint for each subject.



	R_data (numpy.ndarray): The dependent-variable can be either a 2D array or a 3D array.
	For 2D array, it got a shape of (n, q), where n represent
the number of trials, and q represents the outcome/dependent variable
For a 3D array,it got a shape (T, n, q), where the first dimension
represents timepoints, the second dimension represents the number of trials,
and the third dimension represents a dependent variable



	idx_data (numpy.ndarray): The indices for each trial within the session. It should be a 2D array where each row
	represents the start and end index for a trial.



	method (str, optional): The statistical method to be used for the permutation test. Valid options are
	“regression”, “univariate”, or “cca”. (default: “regression”).
Note: “cca” stands for Canonical Correlation Analysis





Nperm (int): Number of permutations to perform (default: 1000).
confounds (numpy.ndarray or None, optional):


The confounding variables to be regressed out from the input data (D_data).
If provided, the regression analysis is performed to remove the confounding effects.
(default: None):




trial_timepoints (int): Number of timepoints for each trial (default: None)
verbose (bool, optional):


If True, display progress messages. If False, suppress progress messages.





	test_statistics_option (bool, optional):
	If True, the function will return the test statistics for each permutation.
(default: False)



	FWER_correction (bool, optional):
	Specify whether to perform family-wise error rate (FWER) correction for multiple comparisons using the MaxT method(default: False).
Note: FWER_correction is not necessary if pval_correction is applied later for multiple comparison p-value correction.



	identify_categoriesbool or list or numpy.ndarray, optional, default=True
	If True, automatically identify categorical columns. If list or ndarray, use the provided list of column indices.



	category_limint or None, optional, default=None
	Maximum allowed number of categories for F-test. Acts as a safety measure for columns
with integer values, like age, which may be mistakenly identified as multiple categories.



	test_combination:       Calculates geometric means of p-values using permutation testing (default: False). Valid options are:
	
	True (bool): Return a single geometric mean per time point.


	“across_rows” (str): Calculate geometric means for each row.


	“across_columns” (str): Calculate geometric means for each column.













Returns:


	result (dict): A dictionary containing the following keys. Depending on the test_statistics_option and method, it can return the p-values,
	correlation coefficients, test statisticss.
‘pval’: P-values for the test with shapes based on the method:



	method==”Regression”: (T, p)


	method==”univariate”: (T, p, q)


	method==”cca”: (T, 1)








	‘test_statistics’: test statistics is the permutation distribution if test_statistics_option is True, else None.
	
	method==”Regression”: (T, Nperm, p)


	method==”univariate”: (T, Nperm, p, q)


	method==”cca”: (T, Nperm, 1)








‘base_statistics’: Correlation coefficients for the test with shape (T, p, q) if method==”univariate”, else None.
‘test_type’: the type of test, which is the name of the function
‘method’: the method used for analysis Valid options are


“regression”, “univariate”, or “cca”, “one_vs_rest” and “state_pairs” (default: “regression”).




‘max_correction’: Specifies if FWER has been applied using MaxT, can either output True or False.
‘Nperm’ :The number of permutations that has been performed.






Note

The function automatically determines whether permutation testing is performed per timepoint for each subject or
for the whole data based on the dimensionality of D_data.
The function assumes that the number of rows in D_data and R_data are equal









	
glhmm.statistics.test_across_visits(input_data, vpath_data, n_states, method='regression', Nperm=0, verbose=True, confounds=None, test_statistics_option=False, pairwise_statistic='mean', FWER_correction=False, category_lim=None, identify_categories=False)

	




	
glhmm.statistics.test_statistics_calculations(Din, Rin, perm, test_statistics, proj, method, category_columns=[], test_combination=False)

	Calculates the test_statistics array and pval_perms array based on the given data and method.


Parameters:


Din (numpy.ndarray): The data array.
Rin (numpy.ndarray): The dependent variable.
perm (int): The permutation index.
pval_perms (numpy.ndarray): The p-value permutation array.
test_statistics (numpy.ndarray): The permutation array.
proj (numpy.ndarray or None): The projection matrix (None for correlation methods).
method (str): The method used for permutation testing.






Returns:


test_statistics (numpy.ndarray): Updated test_statistics array.
pval_perms (numpy.ndarray): Updated pval_perms array.










	
glhmm.statistics.validate_condition(condition, error_message)

	Validates a given condition and raises a ValueError with the specified error message if the condition is not met.


Parameters:


condition (bool): The condition to check.
error_message (str): The error message to raise if the condition is not met.










	
glhmm.statistics.viterbi_path_to_stc(viterbi_path, n_states)

	Convert Viterbi path to state-time matrix.


Parameters:


viterbi_path (numpy.ndarray): 1D array or 2D matrix containing the Viterbi path.
n_states (int): Number of states in the hidden Markov model.






Returns:


stc (numpy.ndarray): State-time matrix where each row represents a time point and each column represents a state.












            

          

      

      

    

  

    
      
          
            
  
glhmm.palm_functions


	
glhmm.palm_functions.hcp2block(tmp, blocksfile=None, dz2sib=False, ids=None)

	Convert HCP-style twin data into block structure.


Parameters:


file (str): Path to the input CSV file containing twin data.
blocksfile (str, optional): Path to save the resulting blocks as a CSV file.
dz2sib (bool, optional): If True, handle non-monozygotic twins as siblings. Default is False.
ids (list or array-like, optional): List of subject IDs to include. Default is None.






Returns:



	tuple: A tuple containing three elements:
	tab (numpy.ndarray): A modified table of twin data.
B (numpy.ndarray): Block structure representing relationships between subjects.
famtype (numpy.ndarray): An array indicating the type of each family.














	
glhmm.palm_functions.is_single_value(variable)

	Check if an array contains a singlevalue.

This function checks if an array contains a singlevalue.

Parameters:
arr (numpy.ndarray or list): The array to be checked.

Returns:
bool: True if the array contains a single value, False otherwise.






	
glhmm.palm_functions.lmaxflipnode(Ptree, ns)

	Calculate the logarithm of the maximum number of sign-flips within a palm tree node.

This function calculates the logarithm of the maximum number of sign-flips within a palm tree node.

Parameters:
Ptree (list or numpy.ndarray): The palm tree structure.
ns (int): The current logarithm of sign-flips (initialized to 0).

Returns:
int: The logarithm of the maximum number of sign-flips within the node.






	
glhmm.palm_functions.lmaxpermnode(Ptree, n_p)

	Calculate the logarithm of the maximum number of permutations within a palm tree node.

This function calculates the logarithm of the maximum number of permutations within a palm tree node.

Parameters:
Ptree (list or numpy.ndarray): The palm tree structure.
n_p (int): The current logarithm of permutations (initialized to 0).

Returns:
int: The logarithm of the maximum number of permutations within the node.






	
glhmm.palm_functions.lseq2np(S)

	Calculate the logarithm of the number of permutations for a given sequence.

This function calculates the logarithm of the number of permutations for a given sequence.

Parameters:
S (numpy.ndarray): The input sequence.

Returns:
int: The logarithm of the number of permutations for the sequence.






	
glhmm.palm_functions.maketree(B, M, O, wholeblock, nosf)

	Recursively construct a palm tree structure from input matrices.

This function builds a palm tree structure by recursively processing input matrices representing
nodes in the palm tree.

Parameters:
B (numpy.ndarray): The input matrix where each row represents a node in the palm tree (Block definitions).
M (numpy.ndarray): The corresponding Design-matrix, which associates nodes in B with additional data.
O (numpy.ndarray): Observation indices
wholeblock (bool): A boolean indicating if the entire block is positive based on the first element of B.
nosf (bool): A boolean indicating if there are no signflip this level

Returns:
tuple: A tuple containing:



	S (numpy.ndarray or float): The palm tree structure for this branch.


	Ptree (numpy.ndarray or list): The palm tree structure












	
glhmm.palm_functions.maxflipnode(Ptree, ns)

	Calculate the maximum number of sign-flips within a palm tree node.

This function recursively calculates the maximum number of sign-flips within a palm tree node.

Parameters:
Ptree (list or numpy.ndarray): The palm tree structure.
ns (int): The current number of sign-flips (initialized to 1).

Returns:
int: The maximum number of sign-flips within the node.






	
glhmm.palm_functions.maxpermnode(Ptree, np)

	Calculate the maximum number of permutations within a palm tree node.

This function recursively calculates the maximum number of permutations within a palm tree node.

Parameters:
Ptree (list or numpy.ndarray): The palm tree structure.
np (int): The current number of permutations (initialized to 1).

Returns:
int: The maximum number of permutations within the node.






	
glhmm.palm_functions.palm_factorial(N=101)

	Calculate logarithmically scaled factorials up to a given number.

This function precomputes logarithmically scaled factorials up to a specified number.

Parameters:
N (int, optional): The maximum number for which to precompute factorials (defaults to 101).

Returns:
numpy.ndarray: An array of precomputed logarithmically scaled factorials.






	
glhmm.palm_functions.palm_maxshuf(Ptree, stype='perms', uselog=False)

	Calculate the maximum number of shufflings (permutations or sign-flips) for a given palm tree structure.

Parameters:
Ptree (list or numpy.ndarray): The palm tree structure.
stype (str, optional): The type of shuffling to calculate (‘perms’ for permutations by default).
uselog (bool, optional): A flag indicating whether to calculate using logarithmic values (defaults to False).

Returns:
int: The maximum number of shufflings (permutations or sign-flips) based on the specified criteria.






	
glhmm.palm_functions.palm_permtree(Ptree, nP, CMC=False, maxP=None)

	Generate permutations of a given palm tree structure.

This function generates permutations of a palm tree structure represented by Ptree. Permutations are created by
shuffling the branches of the palm tree. The number of permutations is controlled by the ‘nP’ parameter.


Parameters:

Ptree (list or numpy.ndarray): The palm tree structure to be permuted.
nP (int): The number of permutations to generate.
CMC (bool, optional): Whether to use Conditional Monte Carlo (CMC) method for permutation.


Defaults to False.




maxP (int, optional): The maximum number of permutations allowed. If not provided, it is calculated automatically.



Returns:


	numpy.ndarray: An array representing the permutations. Each row corresponds to a permutation, with the first
	column always representing the identity permutation.





Note:
- If ‘CMC’ is False and ‘nP’ is greater than ‘maxP’ / 2, a warning message is displayed, as it may take a


considerable amount of time to find non-repeated permutations.





	The function utilizes the ‘pickperm’ and ‘randomperm’ helper functions for the permutation process.










	
glhmm.palm_functions.palm_quickperms(EB, M=None, nP=1000, CMC=False, EE=True)

	Generate a set of permutations for a given input matrix using palm methods.


Parameters:

EB (numpy.ndarray): Block structure representing relationships between subjects.
M (numpy.ndarray, optional): The matrix of attributes, which is not typically required.


Defaults to None.




nP (int): The number of permutations to generate.
CMC (bool, optional): A flag indicating whether to use the Conditional Monte Carlo method (CMC).


Defaults to False.





	EE (bool, optional): A flag indicating whether to assume exchangeable errors, which allows permutation.
	Defaults to True.







Returns:

list: A list containing the generated permutations.







	
glhmm.palm_functions.palm_reindex(B, meth='fixleaves')

	Reindex a 2D numpy array using different procedures while preserving block structure.

This function reorders the elements of a 2D numpy array B by applying one of several reindexing methods.
The primary goal of reindexing is to assign new values to elements in such a way that they are organized
in a desired order or structure.

Parameters:
B (numpy.ndarray): The 2D input array to be reindexed.
meth (str, optional): The reindexing method to be applied. It can take one of the following values:



	‘fixleaves’: This method reindexes the input array by preserving the order of unique values in the
first column and recursively reindexes the remaining columns. It is well-suited for hierarchical
data where the first column represents levels or leaves.


	‘continuous’: This method reindexes the input array by assigning new values to elements in a
continuous, non-overlapping manner within each column. It is useful for continuous data or when
preserving the order of unique values is not a requirement.


	‘restart’: This method reindexes the input array by restarting the numbering from 1 for each block
of unique values in the first column. It is suitable for data that naturally breaks into distinct
segments or blocks.


	‘mixed’: This method combines both the ‘fixleaves’ and ‘continuous’ reindexing methods. It reindexes
the first columns using ‘fixleaves’ and the remaining columns using ‘continuous’, creating a mixed
reindexing scheme.







Returns:
numpy.ndarray: The reindexed array, preserving the block structure based on the chosen method.

Raises:
ValueError: If the meth parameter is not one of the valid reindexing methods.






	
glhmm.palm_functions.palm_shuftree(Ptree, nP, CMC=False, EE=True)

	Generate a set of shufflings (permutations or sign-flips) for a given palm tree structure.


Parameters:

Ptree (list): The palm tree structure.
nP (int): The number of permutations to generate.


	CMC (bool, optional): A flag indicating whether to use the Conditional Monte Carlo method (CMC).
	Defaults to False.



	EE (bool, optional): A flag indicating whether to assume exchangeable errors, which allows permutation.
	Defaults to True.







Returns:

list: A list containing the generated shufflings (permutations).







	
glhmm.palm_functions.palm_tree(B, M=None)

	Construct a palm tree structure from an input matrix B and an optional design-matrix M.

The palm tree represents a hierarchical structure where each node can have three branches:
- The left branch contains data elements.
- The middle branch represents special features (if any).
- The right branch contains nested structures.

Parameters:
B (numpy.ndarray): The input matrix where each row represents the Multi-level block definitions of the PALM tree.
M (numpy.ndarray, optional): An optional Design-matrix that associates each node in B with additional data.


Defaults to None.




Returns:
list: A list containing three elements:



	Ptree[0] (numpy.ndarray or list): The left branch of the palm tree, containing data elements.


	
	Ptree[1] (numpy.ndarray, list, or empty list): The middle branch of the palm tree, representing
	special features (if any).







	Ptree[2] (numpy.ndarray or list): The right branch of the palm tree, containing nested structures.












	
glhmm.palm_functions.pickperm(Ptree, P)

	Extract a permutation from a palm tree structure.

This function extracts a permutation from a given palm tree structure. It does not perform the permutation
but returns the indices representing the already permuted tree.


Parameters:

Ptree (list or numpy.ndarray): The palm tree structure.
P (numpy.ndarray): The current state of the permutation.



Returns:

numpy.ndarray: An array of indices representing the permutation of the palm tree structure.







	
glhmm.palm_functions.randomperm(Ptree_perm)

	Create a random permutation of a palm tree structure.

This function generates a random permutation of a given palm tree structure by shuffling its branches.


Parameters:

Ptree_perm (list or numpy.ndarray): The palm tree structure to be permuted.



Returns:

list: The randomly permuted palm tree structure.







	
glhmm.palm_functions.renumber(B)

	Renumber the elements in a 2D numpy array B, preserving their order within distinct blocks.

This function renumbers the elements in the input array B based on distinct values in its first column.
Each distinct value represents a block, and the elements within each block are renumbered sequentially,
while preserving the relative order of elements within each block.

Parameters:
B (numpy.ndarray): The 2D input array to be renumbered.

Returns:
tuple: A tuple containing:



	Br (numpy.ndarray): The renumbered array, where elements are renumbered within blocks.


	addcol (bool): A boolean indicating whether a column was added during renumbering.












	
glhmm.palm_functions.seq2np(S)

	Calculate the number of permutations for a given sequence.

This function calculates the number of permutations for a given sequence.

Parameters:
S (numpy.ndarray): The input sequence.

Returns:
int: The number of permutations for the sequence.
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	HMM
	Hidden Markov Model.



	n_parcels
	The number of brain parcels/regions/seeds.



	n_samples
	The number of total timepoints.



	n_sessions
	The number of total sessions.



	n_states
	The number of hidden states in the HMM.



	state mixing
	Refers to whether the model is capable of capturing within-session state modulations, rather than assigning the entire sessions (or the largest part of them) to a single state. For more information, visit Ahrends et al. (2022) article here [https://pubmed.ncbi.nlm.nih.gov/35217207/].







            

          

      

      

    

  

    
      
          
            
  
Gaussian-Linear Hidden Markov Model

This notebook shows an example of training and inspecting a Gaussian-Linear Hidden Markov Model (GLHMM). This model is fit to two sets of timeseries, such as a neuroimaging/electrophysiological recording and a corresponding behavioural or other physiological timeseries. If you want to model just one set of timeseries, you can e.g., use the Standard Gaussian HMM. If you are new to the HMM or the GLHMM toolbox, we recommend starting there for a thorough
introduction.
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Background

The GLHMM is a generalization of the HMM, introduced in Vidaurre et al., 2023 [https://arxiv.org/abs/2312.07151]. We here assume that the observations Y at time point t were generated by a Gaussian distribution with parameters \(\mu\) and \(\Sigma\) (similar to the standard Gaussian HMM), as well as regression coefficients \(\beta\) that relate the second set of variables X to Y. When state k is active at time point t, the GLHMM thus assumes that the timeseries Y
follows the following distribution:


\[Y_t\sim N(\mu^k+X_t\beta^k,\Sigma^k)\]

Compared to the standard Gaussian HMM, the GLHMM thus adds the \(X_t\beta^k\) term, which allows modelling the relationship to a second set of variables.

The remaining HMM parameters are essentially the same as in the standard HMM, i.e. the transition probabilities \(\theta\):


\[P(s_t=k|s_{t-1}=l)=\theta_{k,l}\]

the initial state probabilities \(\pi\):


\[P(s_t=k)=\pi_k\]

as well as the posterior estimates for both X and Y:


\[\gamma_{t,k}:=P(s_t=k|s_{>t},s_{<t},X,Y)\]


\[\xi_{t,k,l}:=P(s_t=k,s_{t-1}=l|s_{>t},s_{<t-1},X,Y)\]

The GLHMM can be used to model, in addition to the patterns described by the standard HMM (such as time-varying amplitude or functional connectivity), temporal changes in the relationship between two timeseries. This could be, for instance, the interaction between one group of brain areas in the prefrontal cortex and another group of brain areas in the occipital cortex, the relationship between BOLD-signal across the whole brain and respiration, or the interaction between EEG recordings from two
participants recorded simultaneously.



Example: Modelling time-varying interaction between brain and physiological data

We will now go through an example illustrating how to fit and inspect a GLHMM. The example uses simulated data that can be found in the example_data folder. The data were generated to resemble one set of fMRI timeseries and two corresponding non-brain physiological (e.g., heart rate and respiration) timeseries. Our goal is to estimate time-varying amplitude and functional connectivity (FC) within the fMRI recordings and temporal changes in the relationship between the fMRI and the
physiological data.


Preparation

If you have not done so, install the glhmm repo using:


[ ]:





pip install glhmm







We then need to import the relevant modules:


[1]:





import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from glhmm import glhmm, preproc, utils









Load data

The GLHMM requires two inputs: a timeseries Yand a second timeseries X. When running the model on a concatenated timeseries, e.g., a group of subjects or several scanning sessions, you also need to provide the indices indicating where each subject/session in the concatenated timeseries Y starts and ends. Loading data and data formats are explained in more detail in the Standard Gaussian HMM tutorial.

Synthetic data for this example are provided in the glhmm/docs/notebooks/example_data folder. The file data.csv contains synthetic data for the first set of timeseries Y. This is the brain data, containing fMRI recordings from 20 subjects with 1,000 timepoints each, concatenated along the first dimension, and 50 brain areas. The file dataX.csv contains the corresponding physiological measures, heart rate and respiration. The sessions have the same duration as the brain data,
i.e., there are 20 concatenated subjects with 1,000 timepoints each, but only 2 variables (heart rate and respiration). The file T.csv specifies the beginning and end of each subject’s session (same for X and Y).


[2]:





data_tmp = pd.read_csv('./example_data/data.csv', header=None)
dataX_tmp = pd.read_csv('./example_data/dataX.csv', header=None)
T_t_tmp = pd.read_csv('./example_data/T.csv', header=None)
brain_data = data_tmp.to_numpy()
phys_data = dataX_tmp.to_numpy()
T_t = T_t_tmp.to_numpy()
del data_tmp, dataX_tmp, T_t_tmp







NOTE: It is important to standardise your timeseries and, if necessary, apply other kinds of preprocessing before fitting the model. This will be done separately for each session/subject as specified in the indices. The data provided here are already close to standardised (so the code below will not do much), but see Prediction tutorial to see the effect on real data.


[3]:





brain_data,_ = preproc.preprocess_data(brain_data, T_t)
phys_data,_ = preproc.preprocess_data(phys_data, T_t)









Initialise and train a GLHMM

We first initialise the glhmm object, which we here call brainphys_glhmm. By specifying the parameters of the glhmm object, we define which type of model we want to fit and how states should be defined. In the case of the GLHMM, we need to set the model_beta parameter to indicate that we wish to model an interaction between two sets of variables. There are two options for modelling the interaction: global, meaning we estimate regression coefficients that are static over the timeseries in
which case model_beta='shared', or state-dependent, meaning we estimate regression coefficients that vary over time in which case model_beta='state'. In this example, we want to model the time-varying interaction between the brain data and the physiological data, so we set model_beta='state'. For the other parameters, we here want to use the same set-up as in the standard Gaussian HMM, i.e., each state will be defined in terms of mean and covariance.
That means, we will also estimate the time-varying amplitude and functional connectivity in the brain timeseries. We model 4 states by setting the parameter K=4, which you can compare to the states from the standard Gaussian HMM.


[4]:





brainphys_glhmm = glhmm.glhmm(model_beta='state', K=4, covtype='full')







We can check the hyperparameters of the object to make sure the model is defined as we planned:


[5]:





print(brainphys_glhmm.hyperparameters)













{'K': 4, 'covtype': 'full', 'model_mean': 'state', 'model_beta': 'state', 'dirichlet_diag': 10, 'connectivity': None, 'Pstructure': array([[ True,  True,  True,  True],
       [ True,  True,  True,  True],
       [ True,  True,  True,  True],
       [ True,  True,  True,  True]]), 'Pistructure': array([ True,  True,  True,  True])}






We then train the model. To model the interaction, we need to train the GLHMM using both the brain data and the physiological data. The “main” timeseries we are looking to model, i.e., the data for which we also want to estimate mean and covariance, is Y, so in this case Y=brain_data. The secondary timeseries from which we model only the interaction with the main timeseries is called X so X=phys_data. When fitting the model to a group of subjects or sessions, we also need to
specify the indices of the start and end of each session (here called T_t). Note that the indices are shared for X and Y, so the beginning and end of the sessions in X and Y need to correspond.


[ ]:





brainphys_glhmm.train(X=phys_data, Y=brain_data, indices=T_t)









Inspect model


Interaction between brain and physiological measures

Let’s start by retrieving the parameters describing the interaction, i.e., the \(\beta\) values, between the two sets of timeseries: the brain data and the physiological data (heart rate & respiration). The beta-values can be obtained from the trained model using the get_betas() function (or alternatively get_beta(k) to obtain only the beta-values for state k):


[9]:





K = brainphys_glhmm.hyperparameters["K"] # the number of states
q = brain_data.shape[1] # the number of parcels/channels
state_betas = np.zeros(shape=(2,q,K))
state_betas = brainphys_glhmm.get_betas()







Since we here defined \(\beta\) to be time-varying, i.e., state-dependent, we have a matrix describing the interaction between each of the 50 brain regions and the 2 physiological measures for each of the 4 states:


[10]:





for k in range(K):
    plt.subplot(2,2,k+1)
    plt.imshow(state_betas[:,:,k], aspect='auto', interpolation='none')
    plt.colorbar()
    plt.ylabel('Physiological data')
    plt.yticks(np.arange(2), ["Heart rate", "Respiration"])
    plt.xlabel('Brain area')
    plt.title("Betas for state #%s" % (k+1))
plt.subplots_adjust(hspace=0.5, wspace=1)
plt.show()












[image: ../_images/notebooks_GLHMM_example_23_0.png]






State means and covariances

We have defined the model so that each state also has a mean (amplitude) and covariance (functional connectivity), as in the Standard Gaussian HMM. We can retrieve them by using the get_mean and get_covariance_matrix functions:


[11]:





state_means = np.zeros(shape=(q, K))
for k in range(K):
    state_means[:,k] = brainphys_glhmm.get_mean(k) # the state means in the shape (no. features, no. states)
state_FC = np.zeros(shape=(q, q, K))
for k in range(K):
    state_FC[:,:,k] = brainphys_glhmm.get_covariance_matrix(k=k) # the state covariance matrices in the shape (no. features, no. features, no. states)







And plot them:


[12]:





plt.imshow(state_means, interpolation="none")
plt.colorbar()
plt.title("State mean activation")
plt.xticks(np.arange(4), np.arange(1,5))
plt.gca().set_xlabel('State')
plt.gca().set_ylabel('Brain region')
plt.show()












[image: ../_images/notebooks_GLHMM_example_27_0.png]





[15]:





for k in range(4):
    plt.subplot(2,2,k+1)
    plt.imshow(state_FC[:,:,k], interpolation="none")
    plt.xlabel('Brain region')
    plt.ylabel('Brain region')
    plt.colorbar()
    plt.title("State covariance\nstate #%s" % (k+1))
plt.subplots_adjust(hspace=0.7, wspace=0.8)
plt.show()












[image: ../_images/notebooks_GLHMM_example_28_0.png]






Dynamics: Transition probabilities and Viterbi path

We can also look at the transition probabilities and the Viterbi path to understand the temporal sequence in which the states occur. See Standard Gaussian HMM for a detailed explanation. The transition probabilities with and without self-transitions:


[16]:





TP = np.zeros(shape=(K, K))
TP = brainphys_glhmm.P.copy() # the transition probability matrix
plt.subplot(1,2,1)
plt.imshow(TP)
plt.xticks(np.arange(4))
plt.yticks(np.arange(4))
plt.title('Transition probabilities')
plt.xlabel('To State')
plt.ylabel('From State')
plt.colorbar(fraction=0.046, pad=0.04)
plt.subplot(1,2,2)
TP_noself = TP.copy()
np.fill_diagonal(TP_noself, 0)
sumtmp = TP_noself.sum(axis=1)
TP_noself2 = TP_noself.copy()
TP_noself2 = (TP_noself.T / sumtmp[None,:]).T
plt.imshow(TP_noself2)
plt.xticks(np.arange(4))
plt.yticks(np.arange(4))
plt.title('Transition probabilities\n w/o self-transitions')
plt.xlabel('To State')
plt.ylabel('From State')
plt.colorbar(fraction=0.046, pad=0.04)
plt.subplots_adjust(wspace=1)
plt.show()












[image: ../_images/notebooks_GLHMM_example_30_0.png]




And the Viterbi path:


[18]:





vpath = brainphys_glhmm.decode(X=phys_data, Y=brain_data, indices=T_t, viterbi=True)








[19]:





signal =[]
xlabel = "Time"
figsize=(7, 4)
ylabel = ""
yticks=None
line_width=2
label_signal="Signal"

num_states = vpath.shape[1]

# Create a Seaborn color palette
colors = sb.color_palette("Set3", n_colors=num_states)

# Plot the stack plot using Seaborn
fig, axes = plt.subplots(figsize=figsize)  # Adjust the figure size for better readability
axes.stackplot(np.arange(vpath.shape[0]), vpath.T, colors=colors, labels=[f'State {i + 1}' for i in range(num_states)])

# Set labels and legend to the right of the figure
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.legend(title='States', loc='upper left', bbox_to_anchor=(1, 1))  # Adjusted legend position

# Remove y-axis tick labels
axes.set_yticks([])

# Remove the frame around the plot
axes.spines['top'].set_visible(False)
axes.spines['right'].set_visible(False)
axes.spines['bottom'].set_visible(False)
axes.spines['left'].set_visible(False)

axes.legend(loc='upper left', bbox_to_anchor=(1, 0.8))  # Adjusted legend position

# Increase tick label font size
axes.tick_params(axis='both')
plt.title('Viterbi path')
plt.tight_layout()
# Show the plot
plt.show()












[image: ../_images/notebooks_GLHMM_example_33_0.png]




As for the standard HMM, there is a range of useful summary metrics that you can compute to describe the obtained patterns. Have a look at the Standard Gaussian HMM tutorial to see how to obtain them from your trained model. These can be used, e.g., for statistical testing (see Statistical testing tutorial) or prediction/machine learning (see Prediction tutorial).







            

          

      

      

    

  

    
      
          
            
  
Standard Gaussian Hidden Markov Model

This notebook goes through the basic steps to train and inspect a standard Gaussian Hidden Markov Model (HMM). This model is fit to a single set of timeseries, such as neuroimaging or electrophysiological recordings. If you want to model two sets of timeseries and their interaction, the toolbox also offers the Gaussian-Linear HMM.
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Background

The HMM is a generative probabilistic model that assumes that an observed timeseries (e.g., neuroimaging or electrophysiological recordings) were generated by a sequence of hidden “states”. In the Gaussian HMM, we model states as Gaussian distributions, so we assume that the observations Y at time point t were generated by a Gaussian distribution with parameters \(\mu\) and \(\Sigma\) when state k is active, i.e.:


\[Y_t\sim N(\mu^k,\Sigma^k)\]

Additionally, the HMM estimates the probabilities \(\theta\) of transitioning between each pair of states, i.e., the probability that the currently active state at time point t is k given that the state at the previous timepoint t-1 was l:


\[P(s_t=k|s_{t-1}=l) = \theta_{k,l}\]

And the probability \(\pi\) that a segment of the timeseries starts with state k:


\[P(s_0=k)=\pi_k\]

When we fit the model to the observations, we aim to estimate the parameters of the prior distributions for these parameters (\(\mu\), \(\Sigma\), \(\theta\), and \(\pi\)) using variational inference.

We define the posterior estimates as


\[\gamma_{t,k}:=P(s_t=k|s_{>t},s_{<t}, Y)\]


\[\xi_{t,k,l}:=P(s_t=k,s_{t-1}=l|s_{>t},s_{<t-1},Y)\]

where \(\gamma\) are the probabilities of state k being active at time point t (the state time courses) and \(\xi\) are the joint state probabilities. Instead of the state time courses, we can also use the Viterbi path, a discrete representation of which state is active at each time point.

A common application for the standard Gaussian HMM is the estimation of time-varying amplitude and functional connectivity in fMRI recordings (e.g., Vidaurre et al., 2017 [https://www.pnas.org/doi/10.1073/pnas.1705120114]).



Example: Modelling time-varying amplitude and functional connectivity in fMRI recordings

We will now go through an example illustrating how to fit and inspect a standard Gaussian HMM. The example uses simulated data that can be found in the example_data folder. The data were generated to resemble fMRI timeseries, and our goal is to estimate time-varying amplitude and functional connectivity (FC) for a group of subjects. Imagine that the data were recorded from 20 different subjects. Each subject has been recorded for 1,000 timepoints and their timeseries were extracted in a
parcellation with 50 brain regions. The data Y here thus has dimensions ((20 subjects * 1000 timepoints), 50 brain regions). We use the indices array to specify where in the timeseries each of the 20 subjects’ session starts and ends.


Preparation

If you have not done so, install the repo using:


[ ]:





pip install glhmm







We then need to import the relevant modules:


[1]:





import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from glhmm import glhmm, preproc, utils









Load data

The standard HMM requires only one input: a timeseries Y. When running the model on a concatenated timeseries, e.g., a group of subjects or several scanning sessions, you also need to provide the indices indicating where each subject/session in the concatenated timeseries Y starts and ends.

Input data for the glhmm should be in numpy format. Other data types, such as .csv, can be converted to numpy using e.g. pandas, as shown below. Alternatively, the io module provides useful functions to load input data in the required format, e.g., from existing .mat-files. If you need to create indices from session lengths (as used in the HMM-MAR toolbox) you can use the auxiliary.make_indices_from_T function.

Synthetic data for this example are provided in the glhmm/docs/notebooks/example_data folder. The file data.csv contains synthetic timeseries. The data should have the shape ((no subjects/sessions * no timepoints), no features), meaning that all subjects and/or sessions have been concatenated along the first dimension. The second dimension is the number of features, e.g., the number of parcels or channels. The file T.csv specifies the indices in the concatenated timeseries
corresponding to the beginning and end of individual subjects/sessions in the shape (no subjects, 2). In this case, we have generated timeseries for 20 subjects and 50 features. Each subject has 1,000 timepoints. The timeseries has the shape (20000, 50) and the indices have the shape (20, 2).


[2]:





data_tmp = pd.read_csv('./example_data/data.csv', header=None)
T_t_tmp = pd.read_csv('./example_data/T.csv', header=None)
data = data_tmp.to_numpy()
T_t = T_t_tmp.to_numpy()
del data_tmp, T_t_tmp







NOTE: It is important to standardise your timeseries and, if necessary, apply other kinds of preprocessing before fitting the model. This will be done separately for each session/subject as specified in the indices. The data provided here are already close to standardised (so the code below will not do much), but see Prediction tutorial to see the effect on real data.


[3]:





data,_ = preproc.preprocess_data(data, T_t)









Initialise and train an HMM

We first initialise the glhmm object and specify hyperparameters. In the case of the standard Gaussian HMM, since we do not want to model an interaction between two sets of variables, we set model_beta='no'. The number of states is specified using the K parameter. We here estimate K=4 states. If you want to model a different number of states, change K to a different value. In this example, we want to model states as Gaussian distributions with a mean and full covariance matrix, so
that each state is described by a mean amplitude and functional connectivity pattern. To do this, specify covtype='full', the state-specific mean is already set by default. If you do not want to model the mean, add model_mean='no'.


[4]:





hmm = glhmm.glhmm(model_beta='no', K=4, covtype='full')







Optionally, you can check the hyperparameters (including the ones set by default) to make sure that they correspond to how you want the model to be set up.


[5]:





print(hmm.hyperparameters)













{'K': 4, 'covtype': 'full', 'model_mean': 'state', 'model_beta': 'no', 'dirichlet_diag': 10, 'connectivity': None, 'Pstructure': array([[ True,  True,  True,  True],
       [ True,  True,  True,  True],
       [ True,  True,  True,  True],
       [ True,  True,  True,  True]]), 'Pistructure': array([ True,  True,  True,  True])}






We then train the HMM using the data and indices loaded above. Since we here do not model an interaction between two sets of timeseries but run a standard HMM instead, we set X=None. Y should be the timeseries in which we want to estimate states (in here called data) and indices should be the beginning and end indices of each subject (here called T_t). During training, the output will show the progress in model fit at each iteration.


[ ]:





hmm.train(X=None, Y=data, indices=T_t)







Optionally, you can also return Gamma (the state probabilities at each timepoint), Xi (the joint probabilities of past and future states conditioned on the data) and FE (the free energy of each iteration) at this step, but it is also possible to retrieve them later using the decode function for Gamma and Xi and the get_fe function for the free energy.


[ ]:





Gamma,Xi,FE = hmm.train(X=None, Y=data, indices=T_t)









Inspect model

We can then inspect some interesting aspects of the model. We start by checking what the states look like by interrogating the the state means and the state covariances. We will then look at the dynamics, i.e., how states transition between each other (transition probabilities) and how the state sequence develops over time (the Viterbi path). Finally, we will have a look at some summary metrics that can be useful to describe the overall patterns or to relate the model to behaviour using
statistical testing or machine learning/out-of-sample prediction. > We here show some simple result plots. For more plotting options, see the Graphics module


State means: Time-varying amplitude patterns

The state means can be interpreted as time-varying patterns of amplitude (relative to the baseline). They can be retrieved from the model using the get_means() function, or get_mean(k) to retrieve only the mean for state k:


[64]:





K = hmm.hyperparameters["K"] # the number of states
q = data.shape[1] # the number of parcels/channels
state_means = np.zeros(shape=(q, K))
state_means = hmm.get_means() # the state means in the shape (no. features, no. states)







We can then plot these amplitude patterns. This will show the states on the x-axis, each parcel/brain region/channel on the y-axis, and the mean activation of each parcel in each state as the color intensity.


[55]:





plt.imshow(state_means, interpolation="none")
plt.colorbar()
plt.title("State mean activation")
plt.xticks(np.arange(4), np.arange(1,5))
plt.gca().set_xlabel('State')
plt.gca().set_ylabel('Brain region')
plt.show()












[image: ../_images/notebooks_GaussianHMM_example_24_0.png]






State covariances: Time-varying functional connectivity

The state covariances represent the time-varying functional connectivity patterns that we have estimated in the fMRI recordings. They can be obtained from the model using the get_covariance_matrix function:


[63]:





state_FC = np.zeros(shape=(q, q, K))
for k in range(K):
    state_FC[:,:,k] = hmm.get_covariance_matrix(k=k) # the state covariance matrices in the shape (no. features, no. features, no. states)







We can then plot the covariance (i.e., functional connectivity) of each state. These are square matrices showing the brain region by brain region functional connectivity patterns:


[61]:





for k in range(4):
    plt.subplot(2,2,k+1)
    plt.imshow(state_FC[:,:,k], interpolation="none")
    plt.xlabel('Brain region')
    plt.ylabel('Brain region')
    plt.colorbar()
    plt.title("State covariance\nstate #%s" % (k+1))
plt.subplots_adjust(hspace=0.7, wspace=0.8)
plt.show()
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Transition probabilities

The transition probabilities indicate the temporal order in the state sequence, i.e., the probability of transitioning from any one state to any other state. They are contained in hmm.P:


[8]:





TP = np.zeros(shape=(K, K))
TP = hmm.P.copy() # the transition probability matrix







We can then plot the transition probability matrix. Note that self-transitions (i.e., staying in the same state) are considerably more likely in a timeseries that has some order, so there should be a strong diagonal pattern. For comparison, we also show the transition probabilities excluding self-transitions:


[50]:





plt.subplot(1,2,1)
plt.imshow(TP)
plt.xticks(np.arange(4))
plt.yticks(np.arange(4))
plt.title('Transition probabilities')
plt.xlabel('To State')
plt.ylabel('From State')
plt.colorbar(fraction=0.046, pad=0.04)
plt.subplot(1,2,2)
TP_noself = TP.copy()
np.fill_diagonal(TP_noself, 0)
sumtmp = TP_noself.sum(axis=1)
TP_noself2 = TP_noself.copy()
TP_noself2 = (TP_noself.T / sumtmp[None,:]).T
plt.imshow(TP_noself2)
plt.xticks(np.arange(4))
plt.yticks(np.arange(4))
plt.title('Transition probabilities\n w/o self-transitions')
plt.xlabel('To State')
plt.ylabel('From State')
plt.colorbar(fraction=0.046, pad=0.04)
plt.subplots_adjust(wspace=1)
plt.show()
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Viterbi path

The Viterbi path is a discrete representation of the state timecourse, indicating which state is active at which timepoint. We may be able to see whether some states tend to occur more for certain subjects, or are related to a stimulus that occurs at specific timepoints. The Viterbi path can also be informative to understand whether the HMM is “mixing”, i.e., states occur across subjects, or whether the model estimates the entire session of one subject as one state (see Ahrends et al.
2022 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361391/]). You can retrieve the Viterbi path using the decode function and setting viterbi=True:


[12]:





vpath = hmm.decode(X=None, Y=data, indices=T_t, viterbi=True)







And plot the Viterbi path (see also graphics module):


[60]:





signal =[]
xlabel = "Time"
figsize=(7, 4)
ylabel = ""
yticks=None
line_width=2
label_signal="Signal"

num_states = vpath.shape[1]

# Create a Seaborn color palette
colors = sb.color_palette("Set3", n_colors=num_states)

# Plot the stack plot using Seaborn
fig, axes = plt.subplots(figsize=figsize)  # Adjust the figure size for better readability
axes.stackplot(np.arange(vpath.shape[0]), vpath.T, colors=colors, labels=[f'State {i + 1}' for i in range(num_states)])

# Set labels and legend to the right of the figure
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.legend(title='States', loc='upper left', bbox_to_anchor=(1, 1))  # Adjusted legend position

# Remove y-axis tick labels
axes.set_yticks([])

# Remove the frame around the plot
axes.spines['top'].set_visible(False)
axes.spines['right'].set_visible(False)
axes.spines['bottom'].set_visible(False)
axes.spines['left'].set_visible(False)

axes.legend(loc='upper left', bbox_to_anchor=(1, 0.8))  # Adjusted legend position

# Increase tick label font size
axes.tick_params(axis='both')
plt.title('Viterbi path')
plt.tight_layout()
# Show the plot
plt.show()
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Plotting the Viterbi path indicates that the states show fast dynamics across all subjects (concatenated along the y-axis).



Summary metrics

Once we have estimated the model parameters, we can compute some summary metrics to describe the patterns we see more broadly. These summary metrics can be useful to relate patterns in the timeseries to behaviour, using e.g., statistical testing (see Statistical testing tutorial) or machine learning (see Prediction tutorial). The module utils provides useful functions to obtain these summary metrics.

The fractional occupancy (FO) indicates the fraction of time in each session that is occupied by each state. For instance, if one state was active for the entire duration of the session, this state’s FO would be 1 (100%) and all others would be 0. If, on the other hand, all states are present for an equal amount of timepoints in total, the FO of all states would be 1/K (the number of states). This can be informative to understand whether one state is more present in a certain group of
subjects or experimental condition, or to interrogate mixing (explained above).

You can obtain the fractional occupancies using the get_FO function. The output is an array containing the FO of each subject along the first dimension and each state along the second dimension.


[21]:





FO = utils.get_FO(Gamma, indices=T_t)








[43]:





fig, ax = plt.subplots()
bottom = np.zeros(20)
sessions = np.arange(1,21)
width = 0.5
for k in range(K):
    p = ax.bar(sessions, FO[:,k], bottom=bottom, color=colors[k])
    bottom += FO[:,k]
plt.xticks(sessions)
plt.xlabel('Subject')
plt.ylabel('Fractional occupancy')
plt.legend(['State 1', 'State 2', 'State 3', 'State 4'])
plt.title('State Fractional Occupancies')
plt.show()
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The switching rate indicates how quickly subjects switch between states (as opposed to stay in the same state).


[38]:





SR = utils.get_switching_rate(Gamma, T_t)








[44]:





fig, ax = plt.subplots(layout='constrained')
width = 0.18
multiplier = 0
for k in np. arange(K):
    offset = width * multiplier
    rects = ax.bar(sessions + offset, SR[:,k], width, color=colors[k])
    multiplier += 1
ax.set_xticks(sessions + width, sessions)
plt.xlabel('Subject')
plt.ylabel('Switching Rate')
plt.legend(['State 1', 'State 2', 'State 3', 'State 4'])
plt.title('State Switching Rates')
plt.show()
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The state lifetimes (also called dwell times) indicate how long a state is active at a time (either on average, median, or maximum). This can be informative to understand whether states tend to last longer or shorter times, pointing towards slower vs. faster dynamics:


[45]:





LTmean, LTmed, LTmax = utils.get_life_times(vpath, T_t)








[46]:





fig, ax = plt.subplots(layout='constrained')
width = 0.18
multiplier = 0
for k in np. arange(K):
    offset = width * multiplier
    rects = ax.bar(sessions + offset, LTmean[:,k], width, color=colors[k])
    multiplier += 1
ax.set_xticks(sessions + width, sessions)
plt.xlabel('Subject')
plt.ylabel('Mean lifetime')
plt.legend(['State 1', 'State 2', 'State 3', 'State 4'])
plt.title('State Lifetimes')
plt.show()












[image: ../_images/notebooks_GaussianHMM_example_46_0.png]










            

          

      

      

    

  

    
      
          
            
  
Example: Predicting individual traits from an HMM

This tutorial goes through two different ways of predicting or classifying individual traits from an HMM: the Fisher kernel and the summary metrics approach.

NOTE: Running this tutorial requires the HCP data. The data are availablehere [https://db.humanconnectome.org/].

The Fisher kernel (Jaakkola & Haussler, 1998) is a mathematically principled approach that uses the entire set (or a selection) of HMM parameters and constructs from them a kernel, representing between-subject similarities. This kernel can be used in a straightforward and computationally efficient way in any kernel-based prediction or classifier. The approach has been shown to be more accurate and reliable than other methods (Ahrends, Woolrich, & Vidaurre,
2023 [https://www.biorxiv.org/content/10.1101/2023.03.02.530638v2]). Alternatively, you can predict individual traits from summary metrics, using the same features that can be used for statistical testing.

We demonstrate and compare the two approaches on the HCP S1200 Young Adult dataset (van Essen et al., 2013 [https://pubmed.ncbi.nlm.nih.gov/23684880/]) to predict age and cognitive variables from brain dynamics at rest. For reproducibility and since the dataset is very large, we provide a pretrained HMM. Alternatively, you can train the HMM on the dataset using stochastic inference.


Load and prepare data:

This requires that the following files are available: * data: HCP rest fMRI timeseries from 1001 subjects in groupICA50 parcellation * behav: behavioural/demographic items from 1001 HCP subjects * T_t: indices for beginning and start of each subject’s scanning session * twins: matrix indicating family structure (subjects x subjects), zeros for unrelated subjects and positive values for related subjects (diagonal will be ignored) * confounds: confounding variables for 1001 subjects (here sex
and head motion)


[1]:





import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import pickle
from glhmm import glhmm, preproc, prediction








[2]:





# load data from csv files
data_tmp = pd.read_csv('tc1001_RESTall_groupICA50.csv', header=None)
T_t_tmp = pd.read_csv('T.csv', header=None)
behav_tmp = pd.read_csv('behav1001_35var.csv', header=None)
twins_tmp = pd.read_csv('twins.csv', header=None)
confounds_tmp = pd.read_csv('confounds.csv', header=None)

# convert to numpy arrays
data = data_tmp.to_numpy()
behav = behav_tmp.to_numpy()
T_t = T_t_tmp.to_numpy()
twins = twins_tmp.to_numpy()
confounds = confounds_tmp.to_numpy()
del data_tmp, behav_tmp, T_t_tmp, twins_tmp, confounds_tmp

# check that dimensions of input files are correct:
# data should be (n_subjects*n_timepoints, n_parcels)
# behav should be (n_subjects, n_variables)
# T_t should be (n_subjects, 2)
# twins should be (n_subjects, n_subjects)
# confounds should be (n_subjects, n_confounds) or (n_subjects,)
print(data.shape)
print(behav.shape)
print(T_t.shape)
print(twins.shape)
print(confounds.shape)













(4804800, 50)
(1001, 35)
(1001, 2)
(1001, 1001)
(1001, 2)






Standardise timeseries for all following computations. This is an important step, especially when looking at differences between individuals, to make sure that predictions are not driven by measurement noise.


[3]:





data_preproc,_ = preproc.preprocess_data(data, T_t)







Plot the difference between the original and the standardised timeseries:


[4]:





# for one example subject
fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, figsize=(6, 6))
ax0.plot(data[0:4800,:])
ax0.set_xlabel("Time (TR)")
ax0.set_ylabel("Signal Amplitude (ROIs)")
ax0.title.set_text("Original timeseries")
ax1.plot(data_preproc[0:4800,:])
ax1.set_xlabel("Time (TR)")
ax1.set_ylabel("Signal Amplitude (ROIs)")
ax1.title.set_text("Standardised timeseries")
plt.subplots_adjust(hspace=0.5)
plt.show()
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[5]:





# delete non-standardised data to save memory
del data









Load or train HMM and check parameter estimates

Load the pre-trained HMM, provided in example folder, or train HMM on standardised timeseries using stochastic inference. Here, we have trained the HMM using a Gaussian observation model with mean and covariance for 6 states.


[6]:





with open('./example_data/hmm_hcp_preproc.pkl', 'rb') as inp:
    hmm = pickle.load(inp)







check HMM parameter estimates:


[7]:





K = hmm.hyperparameters["K"] # the number of states
q = data_preproc.shape[1] # the number of parcels/channels
init_stateP = hmm.Pi # the initial state probabilities
TP = np.zeros(shape=(K, K))
TP = hmm.P # the transition probability matrix
state_means = np.zeros(shape=(q, K))
state_means = hmm.get_means() # the state means in the shape (no. features, no. states)
state_FC = np.zeros(shape=(q, q, K))
for k in range(K):
    state_FC[:,:,k] = hmm.get_covariance_matrix(k=k) # the state covariance matrices in the shape (no. features, no. features, no. states)








[8]:





# plot initial state probabilities:
plt.subplot(3,3,1)
plt.imshow(init_stateP.reshape(-1, 1))
plt.title("Initial state\nprobabilities")
plt.xticks(())
plt.colorbar()
# plot transition probabilities:
plt.subplot(3,3,2)
plt.imshow(TP)
plt.title("Transition\nprobabilities")
plt.colorbar()
# plot state means:
plt.subplot(3,3,3)
plt.imshow(state_means)
plt.colorbar()
plt.title("State means")
# plot state covariances:
for k in range(6):
    plt.subplot(3,3,4+k)
    plt.imshow(state_FC[:,:,k])
    plt.colorbar()
    plt.title("State covariance\nstate #%s" % (k+1))
plt.subplots_adjust(hspace=0.8, wspace = 0.8)
plt.show()
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Predicting from HMMs

To predict from an HMM, you can use the function predict_phenotype from the prediction module. This function goes through the following steps: 1. create the Fisher kernel or extract summary metrics from a group-level HMM 2. fit prediction model:

using nested cross-validation, where the inner CV loops are used to optimise hyperparameters via grid search

(optionally) deconfounding during CV

(optionally) accounting for group/family structure so that related subjects are never split across folds






	predict on test set


	evaluate predictive performance




The function uses as input a pretrained HMM (hmm), the neuroimaging timeseries of a group of subjects (Y), the variable/phenotype from the same group of subjects that you want to predict (behav), as well as indices specifying the start and end of each individual in the timeseries (indices). It returns the model-predicted values for the variable, the correlation coefficient between the model-predicted and the actual values, and other optional output if requested. The approach
(Fisher kernel or summary metrics) is specified using the predictor argument. The estimator can also be provided using the estimator argument and will otherwise default to kernel ridge regression when using the Fisher kernel approach and to ridge regression when using the summary metrics approach. All other relevant options can be specified by providing a dictionary for the options argument.

predict_phenotype uses (kernel) ridge regression for prediction. The estimator, as well as all other steps can be customised as detailed under “Customising HMM prediction pipeline”.

We will now demonstrate two approaches to predicting individual traits from an HMM using this function: the Fisher kernel (default), and the summary metrics approach.


Option 1: Fisher kernel

The Fisher kernel allows using either all or a selection of HMM parameters for a prediction/classification, and it is constructed from the HMM in a mathematically principled manner that preserves the underlying structure of the model parameters. This approach is recommended because it tends to predict more accurately and does so more robustly than other methods (see Ahrends, Woolrich, & Vidaurre (preprint, 2023) for details).


[9]:





np.random.seed(0)








[10]:





options = {}
# general options:
options['nfolds'] = 10 # number of folds for inner & outer CV loops
options['group_structure'] = twins # group structure that CV should take into account, in this case the family relations. This option makes sure that related subjects are never split across CV folds
# when not using group/family structure, simply don't specify this option
options['confounds'] = confounds # confounding variables (here sex and head motion)
# when not using confounds, simply don't specify this option
# optional outputs:
options['return_scores'] = True
options['return_models'] = True
options['return_hyperparams'] = True
# Fisher kernel options:
options['shape'] = 'linear'
options['incl_Mu'] = True # include state means
options['incl_Sigma'] = True # include state covariances
# the initial state probabilities and the transition probabilities
# are used by default, but can be excluded by setting options['incl_Pi']
# and options['incl_P'], respectively, to False

# use HMM trained/loaded above and standardised timeseries to predict subjects' age:
age = behav[:,0]
results = prediction.predict_phenotype(hmm, data_preproc, age, T_t, predictor='Fisherkernel', estimator='KernelRidge', options=options)








results contains the out-of-sample predictions for age (both in deconfounded and original space) and the correlation between the model-predicted and the actual ages of subjects (corr). Additionally, we have here requested the output to also contain the coefficients of determination (scores), the estimated hyperparameters of each fold - in this case the regularisation parameters alpha (hyperparams), and the trained models themselves (models).


[11]:





print(results['corr_deconf']) # the correlation coefficient
print(results['scores_deconf']) # the coefficients of determination
print(results['hyperparams']) # the regularisation parameters
results['models'][0] # the first estimated model













0.36261482897028813
[-40.60263474160619, -51.749974876195246, -57.7723165438615, -44.261108199195576, -51.87452391727416, -53.83469712607069, -59.6654517846152, -65.3707381217127, -60.86722871902594, -53.869191934751385]
[0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]







[11]:






GridSearchCV(cv=GroupKFold(n_splits=10),
             estimator=KernelRidge(kernel='precomputed'),
             param_grid={'alpha': array([0.0001    , 0.00039811, 0.00158489, 0.00630957, 0.02511886,
       0.1       ])})
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. 
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
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Across-Sessions Within Subject Testing with glhmm toolbox [https://github.com/vidaurre/glhmm]

In this tutorial, we are going to look at how to implement the across sessions within subject testing using the glhmm toolbox [https://github.com/vidaurre/glhmm]. This test is used for studying variability between different sessions in studies spanning multiple scanning sessions and is therefore ideal for longitudinal studies.

In the real world scenarios, one would typically fit a Hidden Markov Model (HMM) to an actual dataset. However, for the sake of showing the concept of statistical testing, we just use synthetic data for both the independent variable and the dependent variable for the across_sessions_within_subject test.

We create synthetic data using the toolbox Genephys [https://github.com/vidaurre/genephys], developed by Vidaurre in 2023 (accessible at https://doi.org/10.7554/eLife.87729.2 [https://elifesciences.org/reviewed-preprints/87729]). Genephys [https://github.com/vidaurre/genephys] makes it possible to simulate electrophysiological data in the context of a psychometric experiment. Hence, it can create scenarios where, for example, a subject is exposed to one or multiple stimuli while
simultaneously recording EEG or MEG data.

While the process of preparing the data requires some explanation, executing the test (across_sessions_within_subject) itself is straightforward —simply input the variables D and R, and define the specific method you wish to apply. The methods include permutation using regression or permutation using correlation and is described in the paper Vidaurre et al.
2023 [https://arxiv.org/abs/2312.07151#:~:text=GLHMM%20is%20implemented%20as%20a,sets%20at%20reasonable%20computational%20time].
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Install necessary packages

Let’s start by importing the required libraries and modules.

First, we will need to import the GLHMM-package as glhmm:

If you dont have the GLHMM-package installed, then run the following command in your terminal:

pip install --user git+https://github.com/vidaurre/glhmm

To use the function glhmm.statistics.py you also need to install the library’s:

pip install statsmodels





pip install tqdm





python -m pip install -U scikit-image





```



Import libraries

Let’s start by importing the required libraries and modules.


[34]:





import os
import numpy as np
import pandas as pd
import glhmm.glhmm as glhmm
import glhmm.graphics as graphics
import glhmm.preproc as preproc
import glhmm.statistics as statistics










1. Load and prepare data


First, we’ll load the synthetic data from this folder [https://github.com/vidaurre/glhmm/tree/main/docs/notebooks/data_statistical_testing] and use the glhmm toolbox [https://github.com/vidaurre/glhmm] to train a classic HMM on the synthetic data that represents EEG or MEG measurements.

Let’s start by loading the essential data for this tutorial:




[35]:





# Get the current directory
current_directory = os.getcwd()
folder_name = "\\data_statistical_testing"

# Load D data
file_name = '\\D_sessions.npy'
file_path = os.path.join(current_directory+folder_name+file_name)
D_sessions = np.load(file_path)

# Load R data
file_name = '\\R_sessions.npy'
file_path = os.path.join(current_directory+folder_name+file_name)
R_sessions = np.load(file_path)

# Load indices
file_name = '\\idx_sessions.npy'
file_path = os.path.join(current_directory+folder_name+file_name)
idx_sessions = np.load(file_path)


print(f"Data dimension of D-session data: {D_sessions.shape}")
print(f"Data dimension of R-session data: {R_sessions.shape}")
print(f"Data dimension of indices: {idx_sessions.shape}")













Data dimension of D-session data: (250, 1500, 16)
Data dimension of R-session data: (1500,)
Data dimension of indices: (10, 2)







[36]:





current_directory = os.getcwd()
folder_name = "\\data_statistical_testing"

# Define file name
file_name = '\\Gamma_sessions.npy'
# Define file path
file_path = os.path.join(current_directory+folder_name+file_name)
# Load Gamma
Gamma = np.load(file_path)
print(f"Data dimension of Gamma: {Gamma.shape}")













Data dimension of Gamma: (375000, 6)







Look at data

Now we can look at the data structure. - D_sessions: 3D array of shape (n_timepoints, n_trials, n_features) - R_sessions: 3D array of shape (n_trials,) - idx_data: 2D array of shape (n_sessions, 2)

D_sessions represents the data collected from the subject, structured as a list with three elements: [250, 1500, 16]. The first element indicates that the subject underwent measurement across 250 timepoints. The second element, 1500, corresponds to the total number of trials conducted. In this context, 10 distinct sessions were executed, each comprising 150 trials, lead up to a total of 1500 trials (150*10). Each individual trial involved the measurement of 16 channels within
the EEG or MEG scanner.

R_sessions simulates the measured reaction time for each trial that the subject undergoes at different sessions.

Lastly, we have idx_data = [10, 2]. This indicates the number of sessions conducted, which in this case is 10. The values in each row represent the start and end indices of the trials.



Prepare data for HMM

When you’re getting into training a Hidden Markov Model (HMM), the input data needs to follow a certain setup. The data shape should look like ((number of timepoints * number of trials), number of features). This means you’ve lined up all the trials from different sessions side by side in one long row. The second dimension is the number of features, which could be the number of parcels or channels.

So, in our scenario, we’ve got this data matrix, D_session, shaped like [250, 1500, 16] (timepoints, trials, channels). Now, when we bring all those trials together, it’s like stacking them up to create a new design matrix, and it ends up with a shape of [375000, 16] (timepoints * trials, channels). Beside that we also need to update R_session and idx_sessions to sync up with the newly concatenated data. To make life easier, we’ve got the function
get_concatenate_sessions. It does the heavy lifting for us.
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D_con,R_con,idx_con=statistics.get_concatenate_sessions(D_sessions, R_sessions, idx_sessions)
print(f"Data dimension of the concatenated D-data: {D_con.shape}")
print(f"Data dimension of the concatenated R-data: {R_con.shape}")
print(f"Data dimension of the updated time stamp indices: {idx_con.shape}")













Data dimension of the concatenated D-data: (375000, 16)
Data dimension of the concatenated R-data: (375000,)
Data dimension of the updated time stamp indices: (10, 2)






For a quick sanity check, let’s verify whether the concatenation was performed correctly on D_sessions. We’ve essentially stacked up every timepoint from each trial sequentially.


To do this, we can compare a slice of our original design matrix, say D_sessions[:, 0, :], with the corresponding slice in the concatenated data, D_con[0:250, :].

If the comparison D_sessions[:, 0, :] == D_con[0:250, :] holds true, we’re essentially confirming that all timepoints in the first trial align perfectly with the first 250 values in our concatenated data. It’s like double-checking to make sure everything lined up as expected.
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D_sessions[:,0,:]==D_con[0:250,:]
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array([[ True,  True,  True, ...,  True,  True,  True],
       [ True,  True,  True, ...,  True,  True,  True],
       [ True,  True,  True, ...,  True,  True,  True],
       ...,
       [ True,  True,  True, ...,  True,  True,  True],
       [ True,  True,  True, ...,  True,  True,  True],
       [ True,  True,  True, ...,  True,  True,  True]])






Here, it’s evident that the concatenation process has been executed accurately.

Next up, let’s confirm if the values in idx_con have been appropriately updated. Each row in this matrix should represent the total count of timepoints and trials for each of the 10 sessions. In our case, it should total to 37500 for each session (calculated as 250 time points * 150 trials).
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idx_con
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array([[     0,  37500],
       [ 37500,  75000],
       [ 75000, 112500],
       [112500, 150000],
       [150000, 187500],
       [187500, 225000],
       [225000, 262500],
       [262500, 300000],
       [300000, 337500],
       [337500, 375000]])






Indeed, each session now aligns with 37500 datapoints. This means that when we pooled together the timepoints and trials, the count for each session ended up exactly as expected. It’s a reassuring confirmation that our concatenation didn’t miss a beat.

Please take note: If the measurements haven’t been continuously recorded within a single session but have been pre-processed and exported on a trial-by-trial basis, we’ll need to construct the indices in a different manner. In our case, where we have 250 timepoints for each trial, where each trial consists of 250 timepoints and there are a total of 1500 trials, the indices must be created by specifying the start and end timepoints for each trial.

You can create these indices using the get_timestamp_indices function. The following example will guide you through the process.

```python idx_data =statistics.get_timestamp_indices(D_trials.shape[0], D_trials.shape[1]) print(f”Values in index:\n{idx_data}\n”) print(f”Shape of index: {idx_data.shape}”)

Values in index: [[ 0 250] [ 250 500] [ 500 750] … [374250 374500] [374500 374750] [374750 375000]]

Shape of index: (1500, 2)




2. Load data or initialise and train HMM

You can either load the Gamma values from a pretrained model or train your own model. If you prefer the former option, load up the data from the data_statistical_testing [https://github.com/vidaurre/glhmm/tree/main/docs/notebooks/data_statistical_testing] folder.

current_directory = os.getcwd()
folder_name = "\\data_statistical_testing"

# Define file name
file_name = '\\Gamma_sessions.npy'
# Define file path
file_path = os.path.join(current_directory+folder_name+file_name)
# Load Gamma
Gamma = np.load(file_path)
print(f"Data dimension of Gamma: {Gamma.shape}")





The GLHMM model in question has been trained utilizing a Gaussian observation model, incorporating mean and covariance parameters for 8 distinct states.

However, if you would rather train your own model, you can use the variables D_con and idx_con as inputs and and complete this section.
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current_directory = os.getcwd()
folder_name = "\\data_statistical_testing"

# Define file name
file_name = '\\Gamma_sessions.npy'
# Define file path
file_path = os.path.join(current_directory+folder_name+file_name)
# Load Gamma
Gamma = np.load(file_path)
print(f"Data dimension of Gamma: {Gamma.shape}")













Data dimension of Gamma: (375000, 6)






Our modeling approach involves representing states as Gaussian distributions with mean and a full covariance matrix. This means that each state is characterized by a mean amplitude and a functional connectivity pattern. To specify this configuration, set covtype='full' and the number of states to K=6. If you prefer not to model the mean, you can include model_mean='no'. Optionally, you can check the hyperparameters to make sure that they correspond to how you want the model to be set
up.
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# Create an instance of the glhmm class
K = 6 # number of states
hmm = glhmm.glhmm(model_beta='no', K=K, covtype='full')
print(hmm.hyperparameters)













{'K': 6, 'covtype': 'full', 'model_mean': 'state', 'model_beta': 'no', 'dirichlet_diag': 10, 'connectivity': None, 'Pstructure': array([[ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True]]), 'Pistructure': array([ True,  True,  True,  True,  True,  True])}







Train an HMM

Now, let’s proceed to train the HMM using the loaded data (D_con) and time indices (idx_con).



Since in this case, we are not modeling an interaction between two sets of timeseries but opting for a “classic” HMM, we set X=None. For training, Y should represent the timeseries from which we aim to estimate states (D_con), and indices should encompass the beginning and end indices of each subject (idx_con).


[49]:





Gamma,Xi,FE = hmm.train(X=None, Y=D_con.astype(np.float64), indices=idx_con)













Init repetition 1 free energy = 9611357.149320949
Init repetition 2 free energy = 9618477.509476783
Init repetition 3 free energy = 9621385.247151058
Init repetition 4 free energy = 9606346.545488238
Init repetition 5 free energy = 9613070.090322018
Best repetition: 4
Cycle 1 free energy = 9608743.309962321
Cycle 2 free energy = 9599146.379085556
Cycle 3, free energy = 9595952.667584648, relative change = 0.24969125135436857
Cycle 4, free energy = 9593744.46989156, relative change = 0.14722456421104277
Cycle 5, free energy = 9591969.75980401, relative change = 0.10580408266580568
Cycle 6, free energy = 9590516.00973263, relative change = 0.07975674142966233
Cycle 7, free energy = 9589318.191362092, relative change = 0.06166337489047422
Cycle 8, free energy = 9588314.733084206, relative change = 0.049120322177787404
Cycle 9, free energy = 9587446.44765255, relative change = 0.040770580145825915
Cycle 10, free energy = 9586667.157245994, relative change = 0.035300100364881015
Cycle 11, free energy = 9585947.039195733, relative change = 0.03158929184662664
Cycle 12, free energy = 9585267.185788276, relative change = 0.02895935472215211
Cycle 13, free energy = 9584611.335564157, relative change = 0.027177644617780456
Cycle 14, free energy = 9583960.28583312, relative change = 0.026269987376945875
Cycle 15, free energy = 9583290.398058318, relative change = 0.02631870873278661
Cycle 16, free energy = 9582573.769830838, relative change = 0.027384058866881552
Cycle 17, free energy = 9581786.82421579, relative change = 0.02919318276303377
Cycle 18, free energy = 9580926.565656481, relative change = 0.03092592540128235
Cycle 19, free energy = 9580027.239087155, relative change = 0.0313178837465529
Cycle 20, free energy = 9579175.530133272, relative change = 0.028805306276216237
Cycle 21, free energy = 9578462.560619129, relative change = 0.023545306163402904
Cycle 22, free energy = 9577925.230540758, relative change = 0.017435547200092723
Cycle 23, free energy = 9577548.09493457, relative change = 0.012089533790769692
Cycle 24, free energy = 9577294.705501068, relative change = 0.008057255253201626
Cycle 25, free energy = 9577127.926706709, relative change = 0.005275241897623068
Cycle 26, free energy = 9577017.829959568, relative change = 0.0034702941336672037
Cycle 27, free energy = 9576943.085124874, relative change = 0.0023504498812578333
Cycle 28, free energy = 9576889.549945353, relative change = 0.0016806549522998336
Cycle 29, free energy = 9576848.184119256, relative change = 0.0012969325250484982
Cycle 30, free energy = 9576813.24014256, relative change = 0.0010943908639671658
Cycle 31, free energy = 9576780.968240777, relative change = 0.0010096851495974518
Cycle 32, free energy = 9576748.773715446, relative change = 0.0010062507261502502
Cycle 33, free energy = 9576714.701172477, relative change = 0.0010638158901219925
Cycle 34, free energy = 9576677.137955926, relative change = 0.0011714281499763906
Cycle 35, free energy = 9576634.658600675, relative change = 0.00132298783816745
Cycle 36, free energy = 9576585.955344513, relative change = 0.0015145293119015676
Cycle 37, free energy = 9576529.816015545, relative change = 0.0017427271025159561
Cycle 38, free energy = 9576465.126022765, relative change = 0.002004139789927611
Cycle 39, free energy = 9576390.887629919, relative change = 0.002294678033190298
Cycle 40, free energy = 9576306.238564149, relative change = 0.0026096395920310453
Cycle 41, free energy = 9576210.528809786, relative change = 0.0029419481203882213
Cycle 42, free energy = 9576103.735355113, relative change = 0.0032719009349330233
Cycle 43, free energy = 9575987.267891089, relative change = 0.0035556024678111697
Cycle 44, free energy = 9575864.426497597, relative change = 0.003736178986219266
Cycle 45, free energy = 9575739.87925489, relative change = 0.003773766545991254
Cycle 46, free energy = 9575618.471307345, relative change = 0.0036651634385434823
Cycle 47, free energy = 9575504.173361233, relative change = 0.003438655687238495
Cycle 48, free energy = 9575399.79004107, relative change = 0.0031305429183421853
Cycle 49, free energy = 9575306.751373889, relative change = 0.002782543153639466
Cycle 50, free energy = 9575224.93974909, relative change = 0.002440799605663086
Cycle 51, free energy = 9575153.163440084, relative change = 0.0021368263147765534
Cycle 52, free energy = 9575089.830255274, relative change = 0.0018819208403311936
Cycle 53, free energy = 9575033.39913607, relative change = 0.0016740216102744156
Cycle 54, free energy = 9574982.580863927, relative change = 0.0015052480648594473
Cycle 55, free energy = 9574936.403545022, relative change = 0.0013659137672803997
Cycle 56, free energy = 9574894.196232002, relative change = 0.0012469252033023533
Cycle 57, free energy = 9574855.513804784, relative change = 0.0011414854786766788
Cycle 58, free energy = 9574820.088904668, relative change = 0.0010442669950531337
Cycle 59, free energy = 9574787.83534586, relative change = 0.0009498780144112477
Cycle 60, free energy = 9574758.833252957, relative change = 0.0008533923635637086
Cycle 61, free energy = 9574733.255960386, relative change = 0.0007520509249820422
Cycle 62, free energy = 9574711.248535812, relative change = 0.0006466673969153903
Cycle 63, free energy = 9574692.81135968, relative change = 0.0005414656727271613
Cycle 64, free energy = 9574677.755531227, relative change = 0.0004419663411779922
Cycle 65, free energy = 9574665.736892218, relative change = 0.00035268471098929324
Cycle 66, free energy = 9574656.325851979, relative change = 0.00027608896723077
Cycle 67, free energy = 9574649.073144114, relative change = 0.00021272533254699508
Cycle 68, free energy = 9574643.555138268, relative change = 0.0001618195167249689
Cycle 69, free energy = 9574639.398738574, relative change = 0.00012187457520842734
Cycle 70, free energy = 9574636.291148031, relative change = 9.111293367581572e-05
Cycle 71, free energy = 9574633.979730448, relative change = 6.776496541161266e-05
Cycle 72, free energy = 9574632.266167883, relative change = 5.023483230975633e-05
Cycle 73, free energy = 9574630.998073507, relative change = 3.717409655091103e-05
Cycle 74, free energy = 9574630.060173223, relative change = 2.749372428905744e-05
Cycle 75, free energy = 9574629.366235698, relative change = 2.0341756166162425e-05
Cycle 76, free energy = 9574628.852250276, relative change = 1.5066498369900091e-05
Cycle 77, free energy = 9574628.470940635, relative change = 1.1177237016500491e-05
Cycle 78, free energy = 9574628.187495865, relative change = 8.30847873869421e-06
Cycle 79, free energy = 9574627.976322237, relative change = 6.189991566649972e-06
Reached early convergence
Finished training in 1585.96s : active states = 6






As you can see, the datapoints in Gamma correspond to the concatenated data (375000), and the number of columns represent the six different states.
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Gamma.shape
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(375000, 6)







Data restructuring

Now we have trained our HMM and got our Gamma values we need to restructure the data back to the original data structure. In this case we are not doing HMM-aggregated statistics, but we will instead perform the statistical testing per time point. We will acheive this by applying the function reconstruct_concatenated_design. It takes a concatenated 2D matrix and converts it into a 3D matrix. So, it will convert Gamma, shaped like [375000, 6] back to the original format for number
of time points and trials shaped like [250, 1500, 6] (timepoints, trials, channels).
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# Reconstruct the Gamma matrix
n_timepoints, n_trials, n_channels = D_sessions.shape[0],D_sessions.shape[1],Gamma.shape[1]
Gamma_reconstruct =statistics.reconstruct_concatenated_design(Gamma,n_timepoints=n_timepoints, n_trials=n_trials, n_channels=n_channels)







As a sanity check we will see if Gamma_reconstruct is actually structured correctly by comparing it with Gamma.


To do this, we can compare a slice of our 3D-matrix, like Gamma_reconstruct[:, 0, :], with the corresponding slice in the concatenated 2D-data, Gamma[0:250, :].

If the comparison Gamma_reconstruct[:, 0, :] == Gamma[0:250, :] holds true, we’re essentially confirming that all timepoints in the first trial align perfectly with the first 250 values in our concatenated data.
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Gamma_reconstruct[:, 0, :] == Gamma[0:250, :]
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array([[ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       ...,
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True]])









3. Across-sessions within subject testing

As we transition to the next phase of this tutorial, we will learn how to apply the across_sessions_within_subject function to find relationships between HMM state occurrences (D) and the corresponding behavioral variables or individual trait (R) through permutation testing.


Permutation testing

Permutation testing is a non-parametric resampling technique that assesses statistical significance without assuming any data distribution. By randomly reshuffling measured data, it generates a null distribution, which can be used to test the null hypothesis — that there is no difference or relationship between variables of interest to be tested



[image: image.png]

Figure 5B in Vidaurre et al. 2023 [https://arxiv.org/abs/2312.07151#:~:text=GLHMM%20is%20implemented%20as%20a,sets%20at%20reasonable%20computational%20time]: A 9 x 4 matrix representing permutation testing across sessions. Each number corresponds to a trial within a session and permutations are performed between sessions, with each session containing the same number of trials.

Hypothesis * Null Hypothesis (H0): No significant relationship exists between the independent variables and the dependent variable. * Alternative Hypothesis (H1):: There is a significant relationship between the independent variables and the dependent variable.


Across-sessions within subject testing - Regression

In regression analysis, we are trying to explain the relationships between predictor variables (D) the response variable (R). Our goal is to identify the factors that contribute to changes in our signal over time. The permutation test for explained variance is a useful method to assess the statistical significance of relationships between state time courses (D) and behavioral measurements (R). A significant result indicates that certain patterns within the state time courses
(Gamma_reconstruct) significantly contribute in explaining why the behavioral measurements varies across sessions. A non-significant result suggests that the observed relationship might just be a product of random chance. Simply put, the state time courses may not play a significant role in accounting for the variability of the behavioral measurements.


Run the across_sessions_within_subject function:

To set the wheels in motion for the across_sessions_within_subject function, input the variables Gamma_reconstruct (D) and R_session (R). Additionally, you can account for potential confounding variables by regressing them out through permutation testing. Initiating regression-based permutation testing involves setting method="regression". For an in-depth comprehension of the function look at the documentation.
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# Set the parameters for across sessions within subject testing
method = "regression"
Nperm = 1000 # Number of permutations (default = 1000)
test_statistic = True
# Perform across-subject testing
result_regression_session  =statistics.test_across_sessions_within_subject(Gamma_reconstruct, R_sessions, idx_sessions,method=method,Nperm=Nperm, test_statistics_option=True)













performing permutation testing per timepoint












100%|██████████| 250/250 [07:57<00:00,  1.91s/it]






We can now examine the local result_regression_session variable.
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result_regression_session
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{'pval': array([0.97902098, 0.95204795, 0.76923077, 0.56943057, 0.51348651,
        0.68231768, 0.41458541, 0.58441558, 0.94005994, 0.66733267,
        0.44855145, 0.52247752, 0.46153846, 0.61538462, 0.7972028 ,
        0.90809191, 0.89310689, 0.92007992, 0.96403596, 0.96003996,
        0.50949051, 0.42957043, 0.66033966, 0.56543457, 0.59140859,
        0.57542458, 0.30669331, 0.1048951 , 0.07792208, 0.04395604,
        0.22877123, 0.07292707, 0.01598402, 0.03696304, 0.05694306,
        0.06993007, 0.07392607, 0.04095904, 0.04095904, 0.01098901,
        0.01198801, 0.05894106, 0.05094905, 0.03696304, 0.03396603,
        0.01798202, 0.001998  , 0.001998  , 0.00699301, 0.00799201,
        0.00699301, 0.004995  , 0.02497502, 0.01298701, 0.00799201,
        0.002997  , 0.003996  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.00699301, 0.02097902,
        0.03596404, 0.03496503, 0.02797203, 0.01598402, 0.01498501,
        0.01598402, 0.004995  , 0.002997  , 0.002997  , 0.00599401,
        0.004995  , 0.00699301, 0.003996  , 0.00699301, 0.002997  ,
        0.003996  , 0.002997  , 0.00899101, 0.00799201, 0.03996004,
        0.05894106, 0.06193806, 0.04395604, 0.03796204, 0.03896104,
        0.09090909, 0.13986014, 0.22577423, 0.28871129, 0.26573427,
        0.32167832, 0.34565435, 0.36563437, 0.34965035, 0.5034965 ,
        0.56243756, 0.53546454, 0.41558442, 0.48751249, 0.46353646,
        0.5974026 , 0.78221778, 0.85714286, 0.84215784, 0.77722278,
        0.76823177, 0.86613387, 0.9000999 , 0.89110889, 0.88011988,
        0.81518482, 0.71928072, 0.48151848, 0.25774226, 0.22277722,
        0.19280719, 0.26873127, 0.26873127, 0.27372627, 0.22077922,
        0.24875125, 0.22877123, 0.17882118, 0.11688312, 0.09390609,
        0.06993007, 0.10889111, 0.16483516, 0.26073926, 0.23676324,
        0.22477522, 0.14585415, 0.11688312, 0.06793207, 0.02797203,
        0.02697303, 0.04995005, 0.05994006, 0.13286713, 0.24775225,
        0.23476523, 0.19080919, 0.06893107, 0.01398601, 0.01198801,
        0.00699301, 0.00699301, 0.02597403, 0.02897103, 0.1018981 ,
        0.2047952 , 0.25674326, 0.21278721, 0.2027972 , 0.14485514,
        0.11688312, 0.17782218, 0.2017982 , 0.32567433, 0.4015984 ,
        0.49150849, 0.55644356, 0.60739261, 0.67532468, 0.56243756,
        0.55044955, 0.25774226, 0.21178821, 0.27572428, 0.26373626,
        0.23876124, 0.1978022 , 0.52247752, 0.82917083, 0.95904096,
        0.91208791, 0.76823177, 0.77422577, 0.83316683, 0.85714286,
        0.87012987, 0.92507493, 0.92807193, 0.97202797, 0.998002  ,
        0.99000999, 0.98101898, 0.83816184, 0.63036963, 0.63536464,
        0.52947053, 0.32467532, 0.26173826, 0.63336663, 0.93806194,
        0.96503497, 0.81718282, 0.88111888, 0.90909091, 0.86313686,
        0.86813187, 0.81018981, 0.93606394, 0.93206793, 0.87512488,
        0.78421578, 0.57642358, 0.60539461, 0.65334665, 0.51348651,
        0.43456543, 0.50949051, 0.72127872, 0.68331668, 0.42357642,
        0.34565435, 0.33466533, 0.57842158, 0.51348651, 0.50549451,
        0.43356643, 0.38861139, 0.81418581, 0.95304695, 0.54245754,
        0.44255744, 0.42957043, 0.44155844, 0.49050949, 0.73826174,
        0.81818182, 0.38161838, 0.31868132, 0.44155844, 0.35864136,
        0.87212787, 0.81618382, 0.13986014, 0.01198801, 0.001998  ,
        0.000999  , 0.05394605, 0.24575425, 0.17682318, 0.14185814]),
 'base_statistics': array([0.00049892, 0.00061995, 0.00200358, 0.00280847, 0.00295669,
        0.00219636, 0.00366838, 0.00222726, 0.00085138, 0.00213992,
        0.00366394, 0.00346922, 0.00371441, 0.00224055, 0.00156632,
        0.00116779, 0.00118826, 0.00116435, 0.00053062, 0.00062427,
        0.00351581, 0.00446345, 0.00228552, 0.00252714, 0.00264226,
        0.00257139, 0.00527065, 0.00797348, 0.00720295, 0.0099783 ,
        0.0060296 , 0.012173  , 0.01527   , 0.01609892, 0.01565402,
        0.01856926, 0.01886511, 0.0244946 , 0.0260627 , 0.04071923,
        0.04494347, 0.0375902 , 0.03575595, 0.04264535, 0.05190801,
        0.0575544 , 0.07135242, 0.08464211, 0.09148191, 0.10044501,
        0.11762306, 0.12095586, 0.12085579, 0.12650917, 0.13003397,
        0.1399011 , 0.14436541, 0.1492866 , 0.15855739, 0.16921116,
        0.17382638, 0.18119024, 0.18624405, 0.18296643, 0.16482628,
        0.14865773, 0.1468939 , 0.16212078, 0.16303161, 0.16182774,
        0.16676001, 0.17255584, 0.18443187, 0.20261489, 0.20947898,
        0.20773875, 0.19814772, 0.18838662, 0.18182351, 0.19799525,
        0.19551315, 0.19741764, 0.20115509, 0.19978472, 0.19274327,
        0.18120339, 0.16983487, 0.16590747, 0.16165303, 0.15884642,
        0.13415545, 0.1267793 , 0.1196816 , 0.10915467, 0.1112847 ,
        0.10382286, 0.09828071, 0.10111106, 0.09570098, 0.07108261,
        0.05938236, 0.06263284, 0.06937528, 0.07221961, 0.07320707,
        0.05866921, 0.03571581, 0.02633781, 0.0245204 , 0.03585391,
        0.03324623, 0.02403141, 0.01890518, 0.02360293, 0.02444668,
        0.03460463, 0.03980932, 0.0616222 , 0.09233499, 0.1032367 ,
        0.10949757, 0.10405759, 0.11558698, 0.11958963, 0.12738418,
        0.12928943, 0.13684298, 0.14588505, 0.15794205, 0.16237639,
        0.16445487, 0.15802211, 0.14493379, 0.12849207, 0.13804388,
        0.15798685, 0.176918  , 0.18322442, 0.1992864 , 0.2010274 ,
        0.21531005, 0.20922357, 0.18282813, 0.1557118 , 0.13004094,
        0.12917013, 0.14680461, 0.16889439, 0.19858373, 0.20978045,
        0.21791227, 0.21951129, 0.20352757, 0.20029842, 0.16128829,
        0.12490661, 0.11401338, 0.10529099, 0.09037824, 0.09724112,
        0.10894491, 0.10717684, 0.11272422, 0.09819454, 0.09166261,
        0.07399017, 0.05900811, 0.04181332, 0.03168438, 0.03191094,
        0.04465779, 0.07760868, 0.09039026, 0.08687471, 0.08530218,
        0.08030146, 0.06953459, 0.03279854, 0.01275508, 0.00630621,
        0.0111201 , 0.01872517, 0.02071442, 0.01976569, 0.02067274,
        0.01840412, 0.012524  , 0.01085093, 0.00745578, 0.00342165,
        0.00647938, 0.00769361, 0.01828146, 0.03234116, 0.03435337,
        0.03749799, 0.04571987, 0.03820467, 0.021304  , 0.00870893,
        0.00855515, 0.01635556, 0.0127461 , 0.01060783, 0.01255094,
        0.01309681, 0.01199056, 0.00434818, 0.00466022, 0.00823326,
        0.01374182, 0.02390191, 0.02136407, 0.01725924, 0.02234158,
        0.02217141, 0.01676883, 0.00903244, 0.00997716, 0.01624446,
        0.01764889, 0.01955604, 0.01152835, 0.01376582, 0.01545852,
        0.01813723, 0.0158565 , 0.00524974, 0.0018242 , 0.00585106,
        0.00832837, 0.00897794, 0.00810267, 0.00681663, 0.00327003,
        0.00249426, 0.00796599, 0.00971065, 0.00658466, 0.00611209,
        0.00148038, 0.00197825, 0.00588929, 0.0106087 , 0.01174226,
        0.01220627, 0.00804437, 0.00615412, 0.00594135, 0.00512721]),
 'test_statistics': array([[0.00049892, 0.00459573, 0.00296785, ..., 0.00400762, 0.00188992,
         0.00354055],
        [0.00061995, 0.00089573, 0.00466854, ..., 0.00404848, 0.00143913,
         0.00220174],
        [0.00200358, 0.00323307, 0.00562375, ..., 0.01042331, 0.00083967,
         0.00108603],
        ...,
        [0.00615412, 0.00697026, 0.0022161 , ..., 0.0026433 , 0.00318863,
         0.00680455],
        [0.00594135, 0.00521647, 0.00217376, ..., 0.00237501, 0.00224233,
         0.00219973],
        [0.00512721, 0.00249302, 0.00317203, ..., 0.00433332, 0.00431129,
         0.00288089]]),
 'test_type': 'test_across_subjects',
 'method': 'regression',
 'max_correction': False,
 'performed_tests': {'t_test_cols': [], 'f_test_cols': []},
 'Nperm': 1000}






What we can see here is that result_regression_session is a dictionary containing the outcomes of a statistical analysis conducted using the specified method and test_type.

Let us break it down: * pval: This array houses the p-values generated from the permutation test.


	corr_coef: Currently an empty list, it is designated to store correlation coefficients if the analysis involves correlation. In this instance, correlation coefficients are not calculated when we set method="regression".


	test_statistic: Will by default always return a list of the base (unpermuted) statistics when test_statistic_option=False. This list can store the test statistics associated with the permutation test. It provides information about the permutation distribution that is used to calculate the p-values. The output will exported if we set test_statistic_option=True


	test_type: Indicates the type of permutation test performed. In this case, it is across_sessions_within_subject.


	method: method: Specifies the analytical method employed, which is 'regression', which means that the analysis is carried out using regression-based permutation testing.


	Nperm: Is the number of permutations that has been performed.





Visualization of results

Now that we have performed our test, we can then visualize the p-value array.

We will use the function plot_heatmap from the graphics module.



Note: Elements marked in red indicate a p-value below 0.05, signifying statistical significance.


[14]:





# Plot p-values
graphics.plot_p_values_over_time(result_regression_session["pval"], title_text ="Heatmap of p-values",figsize=(9, 3), xlabel="Time points")
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Multiple Comparison

To take into account for type 1 error, we can apply the Bonferroni correction.




[15]:





pval_corrected, rejected_corrected =statistics.pval_correction(result_regression_session["pval"], method='fdr_bh')
# Plot p-values
graphics.plot_p_values_over_time(pval_corrected, title_text ="Heatmap of corrected p-values",figsize=(9, 3), xlabel="HMM States", ylabel="")
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Cluster based permutation testing

In order to provide a more strict control over Type I mistakes, we can also apply cluster-based permutation testing to control the Family-Wise Error Rate when conducting multiple comparisons. To use this p-value correction, set test_statistics_option=True while performing permutation testing, as it is an input to the function (pval_cluster_based_correction).




[16]:





pval_cluster =statistics.pval_cluster_based_correction(result_regression_session["test_statistics"],result_regression_session["pval"])
# Plot p-values
graphics.plot_p_values_over_time(pval_cluster, title_text ="Cluster based correction of p-values over time",figsize=(10, 3), xlabel="Time points")
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We can now compare if the results from result_regression_trials["pval"] correspond to the average probability for each state


[17]:





# Detect the intervals of when there is a significant difference, will be highlighed
alpha = 0.05
intervals =statistics.detect_significant_intervals(result_regression_session["pval"], alpha)
print(f"intervals of significant p-values:\n{intervals}")
title = "Average probability for each state uncorrected"
graphics.plot_average_probability(Gamma_reconstruct, vertical_lines=intervals, highlight_boxes=True, title=title)














intervals of significant p-values:
[(29, 29), (32, 33), (37, 40), (43, 84), (87, 89), (139, 141), (148, 153), (243, 245)]
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[18]:





# Detect the intervals of when there is a significant difference, will be highlighed
alpha = 0.05
intervals =statistics.detect_significant_intervals(pval_cluster, alpha)
print(f"intervals of significant p-values:\n{intervals}")
title = "Average probability for each state - cluster correction"
graphics.plot_average_probability(Gamma_reconstruct, vertical_lines=intervals, highlight_boxes=True, title=title)














intervals of significant p-values:
[(43, 84), (148, 153)]
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Conclusion - Regression session

In the permutation testing across sessions, we aimed to find out how state time courses (D) and reaction time (R) are related across various experimental sessions, all while keeping the trial order in the same. The analysis gave us a variable called pval, packed with 250 p-values, each matching up with a specific time point in our experiment.

Now, the interesting bit: Statistically speaking, the test showed that different time windows (espicially timepoints 30-85 ) showed a significant difference and means that the state time courses (D) are related with changes in reaction time (R). In the context of an experiment, this could represent an important period of cognitive or neural processing relevant to the given task, depending on the experimental design.




Across-trials within session testing - Regression

From our previous result, it is evident that there are variations at specific time windows across multiple sessions. This indicates significant changes occurring during each experimental session in which the subject is involved.

An intriguing aspect of this dataset is the opportunity to delve into trial-by-trial variability within each experimental session. Even though we observe a significant difference across sessions, it’s possible that there are specific periods across trials that shows variability. This hypothesis can be tested using the function across_trials_within_session.


Run the across_trials_within_session function:

We do not need to change any input variables to run this test compare to earlier. Just insert input the variables Gamma_reconstruct (D) and R_session (R). Additionally, you can account for potential confounding variables by regressing them out through permutation testing. Initiating regression-based permutation testing involves setting method="regression". For an in-depth comprehension of the function look at the documentation.



Across-sessions within subject testing - Regression


[21]:





# Set the parameters for across sessions within subject testing
method = "regression"
Nperm = 1000 # Number of permutations (default = 1000)
test_statistics_option = True
# Perform across-subject testing
result_regression_trials  =statistics.test_across_trials_within_session(Gamma_reconstruct, R_sessions, idx_sessions,method=method,Nperm=Nperm, test_statistics_option=test_statistics_option)













performing permutation testing per timepoint












100%|██████████| 250/250 [01:47<00:00,  2.33it/s]







Visualization of results

Now that we have performed our test, we can then visualize the p-value array.

We will use the function plot_heatmap from the graphics module.



Note: Elements marked in red indicate a p-value below 0.05, signifying statistical significance.


[23]:





# Plot p-values
graphics.plot_p_values_over_time(result_regression_trials["pval"], title_text ="Heatmap of p-values",figsize=(9, 3), xlabel="Time points")
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Multiple Comparison

To take into account for type 1 error, we can apply the Benjamini/Hochberg correction.




[24]:





alpha = 0.05
pval_corrected, rejected_corrected =statistics.pval_correction(result_regression_trials["pval"], method='fdr_bh',alpha=alpha)
# Plot p-values
graphics.plot_p_values_over_time(pval_corrected, title_text ="Heatmap of corrected p-values",figsize=(9, 3), xlabel="HMM States", ylabel="")
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Cluster based permutation testing

In order to provide a more strict control over Type I mistakes, we can also apply cluster-based permutation testing to control the Family-Wise Error Rate when conducting multiple comparisons.




[43]:





pval_cluster =statistics.pval_cluster_based_correction(result_regression_trials["test_statistics"],result_regression_trials["pval"])
# Plot p-values
graphics.plot_p_values_over_time(pval_cluster, title_text ="Cluster based correction of p-values over time",figsize=(10, 3), xlabel="Time points")
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Conclusion - Regression trials

In the permutation testing across trials, we tried to find out the relationship between state time courses (D) and reaction time (R) throughout different trials within experimental sessions.

Only a few points showed a significant difference. It means that at those given time points, there are variability in the state time courses (D) and changes in reaction time (R). It shows that there are specific time points across trials within a session that varies and could indicate that certain stages of the experimental task may be associated with distinct patterns of state time courses and consequential changes in reaction time. This variability could reflect critical cognitive or neural
events during the task, such as decision-making, information processing, or attentional shifts.

However, the absence of significant differences across the majority of time points and correcting for multiple comparisons had no time points of significant difference. This suggests a stable relationship between state time courses and reaction time throughout most trials within each experimental session. This consistency implies that, on the given session or day, the subject’s performance remains relatively unchanged in terms of the observed state time courses and corresponding reaction times.




Across-sessions within subject testing - Correlation


In correlation analysis, our goal is to explore the association between predictor variables (D) and the response variable (R). Our focus is on identifying the strength of the linear relationship between the state time courses (Gamma_reconstruct) and behavioral measurements, such as ‘reaction time’.

If the result is significant, it means that certain patterns in the state time courses (Gamma_reconstruct) contributes in explaining the variability in behavioral measurements across sessions. On the flip side, a non-significant result suggests that the observed relationship might just be a random thing, implying that our state time courses might not explain the variability in behavioral measurements.




Executing the across_sessions_within_subject Function:

To initiate the across_sessions_within_subject function using correlation, input the variables Gamma_reconstruct (D) and R_session (R). Additionally, you can address potential confounding variables by incorporating permutation testing. Quick reminder: for correlation-based permutation testing, go with method="correlation" to get the correlation coefficients and p-values.




[20]:





# Set the parameters for between-subject testing
method = "univariate"
Nperm = 1000 # Number of permutations (default = 1000)
# Perform across-subject testing
result_univariate =statistics.test_across_sessions_within_subject(Gamma_reconstruct, R_sessions, idx_sessions,method=method,Nperm=Nperm, test_statistics_option=True)













performing permutation testing per timepoint












100%|██████████| 250/250 [05:18<00:00,  1.27s/it]







Visualization of results

Now that we have performed our test, we can then visualize the p-value matrix.

We will use the function plot_heatmap from the graphics module.



Note: Elements marked in red indicate a p-value below 0.05, signifying statistical significance.


[84]:





# Plot p-values
# Pvalues between reation time and each state as function of time
graphics.plot_p_value_matrix(result_univariate["pval"].T, title_text ="Heatmap of p-values",figsize=(8, 5), xlabel="Time points", ylabel="HMM States", annot=False)
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Multiple Comparison

To be sure there is no type 1 error, we can apply the Benjamini/Hochberg to control the False Discovery Rate




[90]:





alpha = 0.05 # threshold for p-values
pval_corrected, rejected_corrected =statistics.pval_correction(result_univariate["pval"], method='fdr_bh', alpha=0.5)
# Plot p-values
graphics.plot_p_value_matrix(pval_corrected.T, title_text ="Heatmap of fdr_bh-corrected p-values",figsize=(8, 5), xlabel="Time points", ylabel="HMM States", annot=False, alpha = alpha)
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Cluster based permutation testing

In order to provide a more strict control over Type I mistakes, we can also apply cluster-based permutation testing to control the Family-Wise Error Rate when conducting multiple comparisons.




[89]:





pval_cluster =statistics.pval_cluster_based_correction(result_univariate["test_statistics"],result_univariate["pval"])
# Plot p-values
graphics.plot_p_value_matrix(pval_cluster.T, title_text ="Heatmap of cluster corrected p-values",figsize=(8, 5), xlabel="Time points", ylabel="HMM States", annot=False, alpha = alpha)
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Plot Correlation Coefficients


[88]:





# Plot correlation coefficients
# Correlations between reation time and each state as function of time
graphics.plot_correlation_matrix(result_univariate["base_statistics"].T, result_univariate["performed_tests"], title_text ="Heatmap of Correlation Coefficeints",figsize=(8, 5), xlabel="Time points", ylabel="HMM States", annot=False)












[image: ../_images/notebooks_Testing_across_sessions_within_subject_62_0.png]





Conclusion - Correlation

The permutation testing analysis using correlation tries to find relationship between gamma values decoded from a HMM and reaction time across multiple experimental sessions. The resulting matrix, (result_correlation["pval"]), takes the form of (time points x states) and shows session-specific variations in the correlation between state time courses at specific timepoints and the simulated reaction time. Hence, it provides information for the time-dependent and state-specific correlation
patterns.

A significant p-value for a particular HMM state and timepoint indicates that the correlation between state time courses (HMM state) at that specific time point and the presence of behavioral measurements significantly differs across experimental sessions. This shows that there are session-specific variations in that given time points or time windows.

We can see that the correlation are mainly between 25-175 time points before flattening out in the end. This absence of correlation towards the end of each trial makes sense, as this is when the signal plateaus or flattens out.

Nevertheless, it is crucial to contextualize these results within the framework of your experimental design and hypotheses. Differences in conditions during sessions may signify meaningful variations in correlation patterns relevant to the research questions. Therefore, interpreting the results in light of your experimental design is essential for a comprehensive understanding of the observed correlations.
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Across-Subject Testing with glhmm toolbox [https://github.com/vidaurre/glhmm]


This tutorial demonstrates how apply across-subject testing using the glhmm toolbox [https://github.com/vidaurre/glhmm]. We will use data sourced from the Human Connectome Project (HCP) S1200 Young Adult dataset (van Essen et al., 2013).

Make sure you have been granted permission to use the HCP data. If not, apply for such permission following the instructions in the HCP Data [https://db.humanconnectome.org/] website. The HCP dataset provides an real-world context for this analysis and offers detailed information for each subject. Across-subject testing involves evaluating the connection between one or more HMM-related aggregated statistics and behavioral traits, such as sex and age or individual traits.



We’ll set up HMM-related aggregated statistics as the independent variable (D) and behavioral traits as the dependent variable (R). The objective is to assess the relationship between these variables.

Throughout the tutorial, we’ll guide you on applying the glhmm toolbox [https://github.com/vidaurre/glhmm] and drawing conclusions from the HCP dataset. While the setup of the glhmm toolbox may require some explanation, running the test itself is straightforward—simply input the variables D and R, and define the specific method you wish to apply. In this case, the methods include permutation using regression or permutation using correlation and is described in the paper Vidaurre
et al. 2023 [https://arxiv.org/abs/2312.07151#:~:text=GLHMM%20is%20implemented%20as%20a,sets%20at%20reasonable%20computational%20time].
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Install necessary packages

Let’s start by importing the required libraries and modules.

First, we will need to import the GLHMM-package as glhmm:

If you dont have the GLHMM-package installed, then run the following command in your terminal:

pip install --user git+https://github.com/vidaurre/glhmm

To use the function glhmm.statistics.py you also need to install the library’s:

pip install statsmodels





pip install tqdm





python -m pip install -U scikit-image





```



Import libraries

Let’s start by importing the required libraries and modules.


[2]:





import os
import numpy as np
import pandas as pd
import glhmm.glhmm as glhmm
import glhmm.graphics as graphics
import glhmm.statistics as statistics










1. Load and prepare Data

For reproducibility and since the HCP dataset is very large, we provide the Gamma values (state probabilities at each timepoint) from a pre-trained HMM. If you don’t have these values, you can follow the instructions to train an HMM model in this tutorial [https://github.com/vidaurre/glhmm/blob/main/docs/notebooks/tutorial.ipynb] from the glhmm toolbox [https://github.com/vidaurre/glhmm].

Load Data Let’s start by loading the essential data for this tutorial: * Gamma: State probabilities at each timepoint exported from a fitted HMM model. The model is trained on HCP rest fMRI timeseries from 1001 subjects in the groupICA50 parcellation. * data_behavioral: Behavioral and demographic items from the same 1001 HCP subjects.


[3]:





# Define the folder and file names
folder_name = "data"
data_behavioral_file = 'data_behavioral.npy'
data_gamma_file = 'gamma.npy'

# Load behavioral data
file_path = os.path.join(folder_name, data_behavioral_file)
data_behavioral = np.load(file_path)

# Load gamma data
file_path = os.path.join(folder_name, data_gamma_file)
data_gamma = np.load(file_path)








Explore data

Let’s take a closer look at the structure of the data.




[4]:





print(f"Data dimension of data_behavioral: {data_behavioral.shape}")
print(f"Data dimension of data_gamma: {data_gamma.shape}")













Data dimension of data_behavioral: (1001, 2)
Data dimension of data_gamma: (1201200, 8)






The behavioral measurements, denoted as data_behavioral =[1001, 2], reveals that we have measurements for 1001 subjects. Each subject include information about their ‘sex’ and ‘age’.

Looking at data_gamma =[1201200, 8], we find that gamma measurements are concatenated for every timepoint across subjects (1201200 in total, corresponding to 1001 subjects by 1200 timestamps). The dataset comprises 8 columns, each representing the 8 different states at each timepoint per subject.


HMM-aggregated statistics


The purpose of the across_subject function is to conduct permutation tests between subjects. Like mentioned earlier, the data_gamma is a concatenated dataset across subjects and timepoints, totaling 1201200 data points (1001 subjects by 1200 time points) with 8 columns representing different states at each timepoint per subject.

To perform permutation testing using the across_subject function, we first need to compute HMM-related aggregated statistics. This involves deriving values that condense the states of the entire time series for each subject, resulting in a single set of values per subject (one row of data). Since we have gamma output from the HMM, we can calculate the Fractional Occupancy (FO). FO measures the duration spent in each state, providing the probability distribution for each state across the
entire time series. As a result, each subject ends up with a single set of values that represents the states into a probability distribution that sums up to one for each subject.




Calculate indices

To calculate the FO from the gamma values, we must first specify the indices in the concatenated timeseries that correspond to the beginning and end of individual subjects or sessions. These indices should be organized in the shape of [n_subjects, 2] to precisely delineate subject boundaries within the concatenated timeseries.



To achieve this, we’ll use the function get_timestamp_indices. By providing the number of time points (1200) and the number of subjects (1001), the function outputs a variable in the shape of (n_subjects, 2). This variable contains the indices for the beginning and end of each subject’s scanning session.


[5]:





# Prepare the number of time points and number of subjects
n_timepoints = 1200
n_subjects = 1001
idx_time = statistics.get_timestamp_indices(n_timepoints, n_subjects)







Let’s visualize the the first 5 time points


[6]:





# Visualize the first 5 timepoints
idx_time[:5]








[6]:







array([[   0, 1200],
       [1200, 2400],
       [2400, 3600],
       [3600, 4800],
       [4800, 6000]])






Calculate Fractional Occupancy (FO) Having obtained the necessary indices (idx_time), we can now proceed to calculate the FO using the glhmm toolbox [https://github.com/vidaurre/glhmm].


[7]:





# Calculate FO
FO = glhmm.utils.get_FO(data_gamma, idx_time)







Let’s take a closer look at the structure of FO and the behavioral data.
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print(f"Data dimension of FO: {FO.shape}")
print(f"Data dimension of data_behavioral: {data_behavioral.shape}")













Data dimension of FO: (1001, 8)
Data dimension of data_behavioral: (1001, 2)






In this example, (FO) is a 1001x8 matrix and represent the distribution of the duration spent in different states across 1001 subjects. Each row of the matrix corresponds to a subject, and each column represents a specific state.

For example, if the FO matrix entry FO[i, j] is 0.2, it suggests that, on average, subject i spends 20% of the time in state j. These fractional occupancies provide insights into the temporal dynamics of the underlying states of the system across a population of subjects. It makes it possible to runderstand how subjects transition between different states and the overall patterns of behavior within each state.

Now, both FO and data_behavioral share the same number (N) of observations, aligning with the total number of subjects. As mentioned in the paper, the testing procedure involves a (N-by-p) design matrix, denoted as D, where p signifies the number of predictors. In our case, FO serves as the independent variable. Additionally, we have a matrix R with dimensions (N-by-q), representing dependent variables. In our context, data_behavioral fulfills the role of the dependent variable.
Here, q signifies the number of outcomes to be tested.

Following this setup ensures a consistent and accurate testing process across our dataset.




2. Across-subjects testing

As we transition to the next phase of this tutorial, we will learn how to apply the across_subjects function to uncover relationships between the FO (D) and the corresponding behavioral variables (R) using permutation testing.


Permutation testing

Permutation testing is a non-parametric resampling technique that assesses statistical significance without assuming any data distribution. By randomly reshuffling measured data, it generates a null distribution, which can be used to test the null hypothesis—there is no difference or relationship between variables of interest to be tested. For the across_subject test it implies that each observation represents an individual subject, so we can shuffle or rearrange across subjects, as
depicted in Figure 5A in the paper [https://www.biorxiv.org/content/10.1101/2023.01.03.522583v4].



[image: image-2.png]

Figure 5A: A 9 x 4 matrix representing permutation testing across subjects. Each row corresponds to a subject, with one observation each. The first column: displays the original index of each subject (perm=0). Next columns: examples of permuted subject indices.


Family structure

By default, the across_subject function assumes exchangeability across all subjects, meaning any pair of subjects can be swapped. However, in reality, familial or meaningful connections between subjects may exist and can therefore violate the assumption that each subject are independent from each other.

To accommodate these connections, permutation tests with HCP data—or any dataset—involve creating the EB.csv file (Exchangeability Block). This file organizes data into blocks, each representing a family and makes it possibole to perform collective shuffling of entire families. For a more detailed explanation, refer to (Winkler et al, 2015 [https://www.sciencedirect.com/science/article/pii/S105381191500508X?via%3Dihub]). A tutorial on creating your EB.csv from the HCP dataset can be
found in the glhmm toolbox here [https://github.com/vidaurre/glhmm/blob/main/docs/notebooks/multi_level_block_permutation_tutorial.ipynb].

When using the across_subject function to consider family structure, you input a dictionary and we call it dict_fam. This dictionary specifies the directory to load the EB.csv file and includes optional parameters for running the permutation. In our example, we’ll use default options and solely define the file location of the family structure data (EB.csv).


[9]:





dict_fam = {
    'file_location': 'EB.csv',  # Specify the file location of the family structure data
    # 'file_location': r'C:\Users\...\EB.csv'
}









Across subjects - Regression

In regression analysis, we are trying to explain the relationships between predictor variables (D_data) the response variable or signal (R_data).


Understanding Regression:

The objective is to uncover the factors influencing changes in our behavioral measurements. Specifically, we examine the amount of explained variance, it can be used to analyze whether the FO— representing the distribution of the duration spent in different states— significantly contributes to explaining the observed variability in behavioral measurements like ‘sex’ or ‘age.’ A significant result indicates that certain patterns in FO significantly contribute to explaining why the
behavioral measurements varies. A non-significant result, on the other hand, suggests that the observed relationship can be attributed to random chance, implying that the FO may not play a significant role in accounting for the variability of the behavioral measurements (‘sex’, ‘age’).




Run the ``across_subjects`` function:

To run the across_subjects function requires providing inputs of FO (D) and data_behavioral (R). Sense we take family structure into account we will also include the variable dict_fam as an input. Additionally, you can account for potential confounding variables by regressing them out through permutation testing. To initiate regression-based permutation testing, set method="regression".



In this example, we will test how FO relate to variations in ‘sex’ and ‘age’.


[11]:





# Set the parameters for between-subject testing
method = "regression"
Nperm = 1000 # Number of permutations (default = 0)
test_statistic_options = True
identify_categories = True
# Perform across-subject testing
result_regression  =statistics.test_across_subjects(FO, data_behavioral, method=method,Nperm=Nperm, dict_family=dict_fam, test_statistics_option=True)













C:\Users\au323479\AppData\Roaming\Python\Python39\site-packages\glhmm\palm_functions.py:1057: RuntimeWarning: overflow encountered in exp
  maxP = np.exp(lmaxP)












Number of possible permutations is exp(1586.6248450207656).
Generating 1000 shufflings (permutations only).












100%|██████████| 1000/1000 [00:00<00:00, 2826.30it/s]






We can now examine the local result_regression variable.

What we can see here is that result is a dictionary that contains the output of a statistical analysis applied using the specified method and test type.

Let us break it down: * pval: This array holds the p-values resulting from the permutation test. Each value corresponds to a behavioral variable and will have shape of 1 by q, see paper [https://www.biorxiv.org/content/10.1101/2023.01.03.522583v4].


	corr_coef: Currently an empty list. It is intended to store correlation coefficients if correlation is involved in the analysis. In this case, the correlation coefficients are not calculated when we have set method="regression".


	test_statistic: Will by default always return a list of the base (unpermuted) statistics when test_statistic_option=False. This list can store the test statistics associated with the permutation test. It provides information about the permutation distribution that is used to calculate the p-values. The output will exported if we set test_statistic_option=True


	test_type: Indicates the type of permutation test performed. In this case, it is across_subjects.


	method: Specifies the method employed in the analysis. Here, it is 'regression', indicating that the analysis is conducted using regression-based permutation testing.


	Nperm: Is the number of permutations that has been performed.





Visualization of results

Now that we have performed our test, we can then visualize the p-value array.

We will import the function plot_heatmap from module helperfunctions.py




[12]:





# Plot p-values
graphics.plot_p_values_bar(result_regression["pval"], title_text ="Barplot of p-values accounting for Famility structure",
                      figsize=(7, 3), ylabel="HMM states", alpha=0.05                      )
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Conclusion - Regression

Each p-value corresponds to a specific test of the relationship between FO and the behavioral variables ‘sex’ and ‘age’. The permutation test for explained variance indicated that there is insufficient evidence to reject the null hypothesis for any of the HMM states. This suggests that, based on the statistical analysis, there is no statistically significant relationship among FO, ‘sex’and  'age' are not statistically significant for all states.





Across subjects - Correlation

In correlation analysis, our focus is on unraveling intricate relationships between variables. We can statistically assess the relationships between FO (R) and the behavioral measurements (D). A significant result suggests that specific probabilities of states in FO significantly contribute to the observed variations in ‘sex and ‘age. Conversely, a non-significant result indicates that the observed relationship might be attributed to random chance, and FO may not significantly
influence the variability in ‘sex and ‘age.


Run the ``across_subjects`` function:

To run the across_subjects function we just need to provide inputs in the form of D-data (FO) and R-data (data_behavioral). Sense we take family structure into account we will also include the variable dict_fam as an input. To export the permutation distribution we set test_statistic_option=True. Additionally, we can account for potential confounding variables by regressing them out through permutation testing. To initiate correlation-based permutation testing, set
method="correlation".




[13]:





# Set the parameters for between-subject testing
method = "univariate"
Nperm = 10_000 # Number of permutations (default = 1000)
test_statistic_option=True
# Perform across-subject testing
result_univariate  =statistics.test_across_subjects(FO, data_behavioral, method=method,Nperm=Nperm,
                                                dict_family=dict_fam,
                                                test_statistics_option=test_statistic_option, identify_categories=True)














C:\Users\au323479\AppData\Roaming\Python\Python39\site-packages\glhmm\palm_functions.py:1057: RuntimeWarning: overflow encountered in exp
  maxP = np.exp(lmaxP)












Number of possible permutations is exp(1586.6248450207656).
Generating 10000 shufflings (permutations only).












100%|██████████| 10000/10000 [00:08<00:00, 1183.40it/s]






We can now examine the result_univariate variable.


[15]:





result_univariate








[15]:







{'pval': array([[0.469953  , 0.68543146],
        [0.20517948, 0.32336766],
        [0.18888111, 0.32986701],
        [0.51384862, 0.65423458],
        [0.30926907, 0.55234477],
        [0.26287371, 0.35136486],
        [0.2269773 , 0.94570543],
        [0.52084792, 0.21557844]]),
 'base_statistics': array([[-0.7529976 , -0.01307304],
        [ 1.28150949, -0.03635449],
        [-1.3511506 ,  0.03351405],
        [ 0.68191944, -0.01437657],
        [-1.07834326,  0.01901584],
        [-1.14513336,  0.03341424],
        [-1.18981512,  0.00236684],
        [ 0.6357729 ,  0.03923693]]),
 'test_statistics': array([[[7.52997603e-01, 1.30730431e-02],
         [1.28150949e+00, 3.63544906e-02],
         [1.35115060e+00, 3.35140475e-02],
         ...,
         [1.14513336e+00, 3.34142433e-02],
         [1.18981512e+00, 2.36683673e-03],
         [6.35772897e-01, 3.92369290e-02]],

        [[1.06668005e+00, 3.90441330e-03],
         [1.44240794e+00, 2.75625458e-03],
         [9.22922025e-01, 1.35853261e-02],
         ...,
         [1.06805531e+00, 2.82439016e-03],
         [2.20255705e+00, 8.37011017e-03],
         [4.37315726e-01, 1.86695328e-03]],

        [[6.61097808e-01, 2.72188732e-02],
         [7.74908794e-01, 3.15968328e-02],
         [1.22213771e+00, 6.60544623e-02],
         ...,
         [5.22669805e-01, 1.02306052e-02],
         [1.33125487e+00, 2.65548421e-02],
         [7.64713715e-01, 3.66078678e-02]],

        ...,

        [[1.28931272e+00, 4.26791749e-02],
         [9.73283022e-01, 3.41931274e-02],
         [1.10301327e+00, 1.94661123e-02],
         ...,
         [3.54691932e-01, 2.80091297e-03],
         [1.39112699e+00, 2.57275584e-02],
         [2.58279078e-01, 2.32332320e-02]],

        [[2.18538920e+00, 6.73309864e-02],
         [1.28690386e+00, 3.47850438e-02],
         [2.98976074e-01, 2.83774959e-02],
         ...,
         [3.07891753e-02, 3.29632644e-02],
         [1.27231115e+00, 5.75689338e-02],
         [4.02767339e-01, 2.86424215e-02]],

        [[6.83460832e-01, 1.96811509e-02],
         [1.22536278e+00, 5.50794400e-02],
         [9.98663010e-01, 3.89226042e-02],
         ...,
         [7.86289071e-01, 7.59862335e-02],
         [5.98438676e-01, 5.97783842e-02],
         [2.99530189e-01, 1.18797389e-04]]]),
 'test_type': 'test_across_subjects',
 'method': 'univariate',
 'test_combination': False,
 'max_correction': False,
 'performed_tests': {'t_test_cols': [0], 'f_test_cols': []},
 'Nperm': 10000}







Visualization of results

Now that we have performed our test, we can then visualize the p-value and correlation matrix.

We will import the function plot_heatmap from module helperfunctions.py




[16]:





# Plot p-values
alpha=0.05 # p-value threshold
graphics.plot_p_value_matrix(result_univariate["pval"], title_text ="Heatmap of original p-values",
                      figsize=(7, 2), ylabel="HMM states", alpha=alpha,
                      xticklabels=["Sex", "Age"],normalize_vals=True)
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Plot permutation distribution

Presented here are the significant test statistics of our permutation distributionfor the different states. The red line shows the observed statistic, while the datapoints of the histogram represent the permutation distribution




[17]:





# As we didn't find any significant values we can print out the permutation distribution
# Visualizing the permutation distribution for sex, which got index=0
for i in range(result_univariate["test_statistics"].shape[1]):
    graphics.plot_permutation_distribution(result_univariate["test_statistics"][:,i,0],title_text=f"Permutation distribution of State Nr.{i+1} ")
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Conclusion - Correlation

Following permutation testing on correlation across different HMM states derived from FO, the results indicate no statistically significant correlation with the behavioral measurements for 'sex' and 'age'. With a predetermined alpha value of 0.05, none of the p-values in the matrix fall below this threshold. This suggests that, within the permutation testing framework, there is no evidence to reject the null hypothesis for any specific HMM state.

What is interesting is that the findings align with the null relationship observed through an alternative prediction approach, which is also part of the GLHMM toolbox. This approach involves predicting age and classifying sex based on all states’ FO, switching rates, and lifetimes (link [https://github.com/vidaurre/glhmm/blob/main/docs/notebooks/prediction_tutorial.ipynb]).

Notably, the correlation between model-predicted and true age values is below 0.1, and the accuracy for predicting sex is approximately 60%, just above chance. This implies that if we can’t predict age or sex from the comprehensive summary statistics of all states, including FO, switching rates, and lifetimes, we wouldn’t expect individual states’ FO to exhibit significant correlations with age and sex.

Essentially, despite employing different methodologies, both permutation testing on correlation and the prediction approach concur—there is no strong relationship between HMM summary statistics and age/sex. This consistency is encouraging as it suggests that the permutation test effectively captures the absence of significant correlations in the Human Connectome Project (HCP) dataset.
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Across-Trials Within Session Testing with glhmm toolbox [https://github.com/vidaurre/glhmm]

In this tutorial, we are going to look at how to implement the across trials within sessions testing using the glhmm toolbox [https://github.com/vidaurre/glhmm]. This test is used to assess effect differences between trials in one or more experimental sessions and is therefore ideal to see trial by trial variability within a session.

In the real world scenarios, one would typically fit a Hidden Markov Model (HMM) to an actual dataset. However, for the sake of showing the concept of statistical testing, we just use synthetic data for both the independent variable and the dependent variable for the across_trials_within_session test.

We create synthetic data using the toolbox Genephys [https://github.com/vidaurre/genephys], developed by Vidaurre in 2023 (accessible at https://doi.org/10.7554/eLife.87729.2 [https://elifesciences.org/reviewed-preprints/87729]). Genephys [https://github.com/vidaurre/genephys] makes it possible to simulate electrophysiological data in the context of a psychometric experiment. Hence, it can create scenarios where, for example, a subject is exposed to one or multiple stimuli while
simultaneously recording EEG or MEG data.

While the process of preparing the data requires some explanation, executing the test (across_trials_within_session) itself is straightforward —simply input the variables D and R, and define the specific method you wish to apply. The methods include permutation using regression or permutation using correlation and is described in the paper Vidaurre et al.
2023 [https://arxiv.org/abs/2312.07151#:~:text=GLHMM%20is%20implemented%20as%20a,sets%20at%20reasonable%20computational%20time].
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Install necessary packages

Let’s start by importing the required libraries and modules.

First, we will need to import the GLHMM-package as glhmm:

If you dont have the GLHMM-package installed, then run the following command in your terminal:

pip install --user git+https://github.com/vidaurre/glhmm

To use the function glhmm.statistics.py you also need to install the library’s:

pip install statsmodels





pip install tqdm





python -m pip install -U scikit-image





```



Import libraries

Let’s start by importing the required libraries and modules.


[85]:





import os
import numpy as np
import glhmm.glhmm as glhmm
import glhmm.graphics as graphics
import glhmm.preproc as preproc
import glhmm.statistics as statistics
import glhmm.auxiliary as auxiliary
import glhmm.io as io










1. Load and prepare data


First, we’ll load the synthetic data from this folder [https://github.com/vidaurre/glhmm/tree/main/docs/notebooks/data_statistical_testing] and use the glhmm toolbox [https://github.com/vidaurre/glhmm] to train a classic HMM on the synthetic data that represents EEG or MEG measurements.

Let’s start by loading the essential data for this tutorial:




[86]:





# Get the current directory
current_directory = os.getcwd()
folder_name = "\\data_statistical_testing"

# Load D data
file_name = '\\D_trials.npy'
file_path = os.path.join(current_directory+folder_name+file_name)
D_trials = np.load(file_path)

# Load R data
file_name = '\\R_trials.npy'
file_path = os.path.join(current_directory+folder_name+file_name)
R_trials = np.load(file_path).astype(int)


# Load indices
file_name = '\\idx_trials_session.npy'
file_path = os.path.join(current_directory+folder_name+file_name)
idx_trials_session = np.load(file_path)


# Load time indices for every trial
file_name = '\\idx_trials.npy'
file_path = os.path.join(current_directory+folder_name+file_name)
idx_trials = np.load(file_path)


print(f"Data dimension of D-session data: {D_trials.shape}")
print(f"Data dimension of R-session data: {R_trials.shape}")
print(f"Data dimension of indices for each trial: {idx_trials_session.shape}")
print(f"Data dimension of indices: {idx_trials.shape}")













Data dimension of D-session data: (250, 1421, 16)
Data dimension of R-session data: (1421,)
Data dimension of indices for each trial: (10, 2)
Data dimension of indices: (1421, 2)







Look at data

Now we can look at the data structure. - D_sessions: 3D array of shape (n_timepoints, n_trials, n_features) - R_sessions: 3D array of shape (n_trials,) - idx_data: 2D array of shape (n_sessions, 2)

D_sessions represents the data collected from the subject, structured as a list with three elements: [250, 1421, 16]. The first element indicates that the subject underwent measurement across 250 timepoints. The second element, 1421 corresponds to the total number of trials conducted. In this context, 10 distinct sessions were executed, each comprising 150 trials, lead up to a total of 1421 trials (150*10). Each individual trial involved the measurement of 16 channels within the EEG or
MEG scanner.

R_sessions categorial values of when a stimulus is prestented. It contain values of 1 and 2.

idx_trials_session.shape = [10, 2] shows the indices for the number of sessions conducted, which in this case is 10 The values in each row represent the indices for the first and last trial for a given session. As you can see the number of trials are different from each session.

np.diff(idx_trials_session)
array([[129],
       [132],
       [150],
       [150],
       [150],
       [150],
       [150],
       [150],
       [111],
       [149]])





Lastly, we have idx_trials.shape = [1421, 2], which marks the number of trials conducted, which in this case is 1421 The values in each row represent the start and end indices for every trial. Having this index to seperate the time period for each trial is required when training a time-delay embedded HMM (TDE-HMM).



Prepare data for HMM

When you’re getting into training a Hidden Markov Model (HMM), the input data needs to follow a certain setup. The data shape should look like ((number of timepoints * number of trials), number of features). This means you’ve lined up all the trials from different sessions side by side in one long row. The second dimension is the number of features, which could be the number of parcels or channels.

So, in our scenario, we’ve got this data matrix, D_session, shaped like [250, 1421, 16] (timepoints, trials, channels). Now, when we bring all those trials together, it’s like stacking them up to create a new design matrix, and it ends up with a shape of [355250, 16] (timepoints * trials, channels). Beside that we also need to update R_session and idx_trials_session to sync up with the newly concatenated data. To make life easier, we’ve got the function
get_concatenate_sessions. It does the heavy lifting for us.

Note: it is important to use ``idx_trials_session`` for this function as the concatenation is done trial-by-trial basis for every defined session.


[87]:





D_con,R_con,idx_con=statistics.get_concatenate_sessions(D_trials, R_trials, idx_trials_session)
print(f"Data dimension of the concatenated D-data: {D_con.shape}")
print(f"Data dimension of the concatenated R-data: {R_con.shape}")
print(f"Data dimension of the updated time stamp indices: {idx_con.shape}")













Data dimension of the concatenated D-data: (355250, 16)
Data dimension of the concatenated R-data: (355250,)
Data dimension of the updated time stamp indices: (10, 2)






For a quick sanity check, let’s verify whether the concatenation was performed correctly on D_trials. We’ve essentially stacked up every timepoint from each trial sequentially.


To do this, we can compare a slice of our original design matrix, say D_trials[:, 0, :], with the corresponding slice in the concatenated data, D_con[0:250, :].

If the comparison D_trials[:, 0, :] == D_con[0:250, :] holds true, we’re essentially confirming that all timepoints in the first trial align perfectly with the first 250 values in our concatenated data. It’s like double-checking to make sure everything lined up as expected.
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D_trials[:,0,:]==D_con[0:250,:]








[88]:







array([[ True,  True,  True, ...,  True,  True,  True],
       [ True,  True,  True, ...,  True,  True,  True],
       [ True,  True,  True, ...,  True,  True,  True],
       ...,
       [ True,  True,  True, ...,  True,  True,  True],
       [ True,  True,  True, ...,  True,  True,  True],
       [ True,  True,  True, ...,  True,  True,  True]])






Here, it’s evident that the concatenation process has been executed accurately.

Next up, let’s confirm if the values in idx_con have been appropriately updated. Each row in this matrix should represent the total count of timepoints and trials for each of the 10 sessions.


[89]:





idx_con








[89]:







array([[     0,  32250],
       [ 32250,  65250],
       [ 65250, 102750],
       [102750, 140250],
       [140250, 177750],
       [177750, 215250],
       [215250, 252750],
       [252750, 290250],
       [290250, 318000],
       [318000, 355250]])






Indeed, each session now aligns with the number of datapoints. This means that when we pooled together the timepoints and trials, the count for each session ended up exactly as expected. It’s a reassuring confirmation that our concatenation didn’t miss a beat.




2. Load data or initialise and train HMM

You can either load the Gamma values from a pretrained model or train your own model. If you prefer the former option, load the data (Gamma_trials) from the data_statistical_testing [https://github.com/vidaurre/glhmm/tree/main/docs/notebooks/data_statistical_testing] folder. In this example we have trained a TDE-HMM, incorporating mean and covariance parameters for 6 distinct states. TDE-HMM calculates the covariance and then compares the covariance at different time points. If the
covariances are similar, the time points are assigned to the same state; otherwise, they are assigned to different states.

current_directory = os.getcwd()
folder_name = "\\data_statistical_testing"

# Load Gamma data
file_name = '\\Gamma_trials.npy'
file_path = os.path.join(current_directory+folder_name+file_name)
Gamma_tde = np.load(file_path)
print(f"Data dimension of Gamma: {Gamma_tde.shape}")





If you decide to train your own TDE-HMM model, you need to prepare the dataset by adding lags that act like a sliding window. These lags capture temporal dependencies in the data and span from -n to n, passing through zero. The code below shows how to define such lags:

# Create lag array
lag_val =list(range(-7, 8, 1))
print(lag_val)
[-7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]





Once the dataset is appropriately prepared, you can proceed with training the TDE-HMM.
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# Define the number of lags (Window size)
lag_val =list(range(-7, 8, 1))








We can now prepare the dataset by using the following function preproc.build_data_tde, so it is ready for the TDE-HMM.

The inputs will be the concatenated data (D_con), the indices that defines the running period for each trial (idx_trials) of the concatenated data, and the lag kernel (lag_val) that will run over each trial.
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idx_trials
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array([[     0,    250],
       [   250,    500],
       [   500,    750],
       ...,
       [354500, 354750],
       [354750, 355000],
       [355000, 355250]])
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# Prepare the dataset for TDE-HMM
D_con_tde,idx_tde = preproc.build_data_tde(D_con, idx_trials,lag_val)
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print(f"Data dimension of the concatenated TDE D-data: {D_con_tde.shape}")
print(f"Data dimension of the updated TDE time stamp indices: {idx_tde.shape}")













Data dimension of the concatenated TDE D-data: (335356, 240)
Data dimension of the updated TDE time stamp indices: (1421, 2)






Upon examination, you’ll notice that the dimension of the concatenated TDE D-data has undergone a transformation from (355250, 16) to (335356, 240).

This transformation is a result of the specified kernel size for the lag, applied individually to each trial. The defined lag kernel ranges from -7 to 7, indicating that we have pooled/excluded 7 data points from both the beginning and end of each trial. In essence, the original trial length of 250 time points has been reduced to 236 (250 - 14).

This adjustment applies for all 1421 trials in our dataset. Initially, the total number of data points in the concatenated data was 355250 (1421 * 250), as indicated at the beginning of this notebook when we loaded the data. However, after processing, D_con_tde now contains 335356 data points, equivalent to 1421 * 236.

If look into idx_tde, we can see that the number period for each trial are 236 points, which match with the pooled 7 data points from both the beginning and end of each trial based on the defined lag_val

Checking out idx_tde, you’ll notice that each trial now spans 236 points, matching the 7 pooled data points from both ends based on the specified kernel size of lag_val.
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idx_tde
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array([[     0,    236],
       [   236,    472],
       [   472,    708],
       ...,
       [334648, 334884],
       [334884, 335120],
       [335120, 335356]])







Initialize-HMM

If you want to train your own HMM you need to do the following steps. First, we need to initialize the hmm object and set the hyperparameters according to our modeling preferences.

In this case, we choose not to model an interaction between two sets of variables in the HMM states, so we set model_beta='no'. For our estimation, we choose K=6 states. If you wish to model a different number of states, simply adjust the value of K.

Our modeling approach involves representing states as Gaussian distributions with mean and a full covariance matrix. This means that each state is characterized by a mean amplitude and a functional connectivity pattern. To specify this configuration, set covtype='full'. If you prefer not to model the mean, you can include model_mean='no'. Optionally, you can check the hyperparameters to make sure that they correspond to how you want the model to be set up.
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# Create an instance of the glhmm class
K = 6 # number of states
hmm = glhmm.glhmm(model_beta='no', K=K, covtype='full')
print(hmm.hyperparameters)













{'K': 6, 'covtype': 'full', 'model_mean': 'state', 'model_beta': 'no', 'dirichlet_diag': 10, 'connectivity': None, 'Pstructure': array([[ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True]]), 'Pistructure': array([ True,  True,  True,  True,  True,  True])}








Train an HMM

Now, let’s proceed to train the TDE-HMM using the data (D_con_tde) and time indices (idx_tde).

Since in this case, we are not modeling an interaction between two sets of timeseries but opting for a “classic” HMM, we set X=None. For training, Y should represent the timeseries from which we aim to estimate states (D_con_tde), and indices should encompass the beginning and end indices of each subject (idx_tde).
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Gamma_tde,Xi,FE = hmm.train(X=None, Y=D_con_tde, indices=idx_tde)













Init repetition 1 free energy = 116160832.74711715
Init repetition 2 free energy = 116184285.88186334
Init repetition 3 free energy = 116178456.68257196
Init repetition 4 free energy = 116166816.5333639
Init repetition 5 free energy = 116175886.17767626
Best repetition: 1
Cycle 1 free energy = 116160746.57477993
Cycle 2 free energy = 116156394.67067881
Cycle 3, free energy = 116154895.40152383, relative change = 0.2562339362311568
Cycle 4, free energy = 116153783.89172213, relative change = 0.15963814415702063
Cycle 5, free energy = 116152863.28739019, relative change = 0.11677924277358287
Cycle 6, free energy = 116152084.07307974, relative change = 0.08995257229617734
Cycle 7, free energy = 116151384.80602844, relative change = 0.07469390345530229
Cycle 8, free energy = 116150759.78463948, relative change = 0.06258481255466751
Cycle 9, free energy = 116150237.40955001, relative change = 0.049706620653324596
Cycle 10, free energy = 116149776.78566559, relative change = 0.041990222384711076
Cycle 11, free energy = 116149364.76900281, relative change = 0.03619958650188911
Cycle 12, free energy = 116148972.92359719, relative change = 0.033281553830788325
Cycle 13, free energy = 116148611.40985, relative change = 0.029790591992198114
Cycle 14, free energy = 116148270.01262315, relative change = 0.027363084683515528
Cycle 15, free energy = 116147936.3199885, relative change = 0.02604886788555741
Cycle 16, free energy = 116147622.7208431, relative change = 0.02389535474161959
Cycle 17, free energy = 116147303.75488736, relative change = 0.02372760762237403
Cycle 18, free energy = 116146981.17573616, relative change = 0.023434057390751332
Cycle 19, free energy = 116146674.47741492, relative change = 0.021794783910522766
Cycle 20, free energy = 116146371.71899211, relative change = 0.021061666793452186
Cycle 21, free energy = 116146109.25348896, relative change = 0.017931252442897942
Cycle 22, free energy = 116145860.88547014, relative change = 0.016685019662309043
Cycle 23, free energy = 116145609.47066496, relative change = 0.016609174599342563
Cycle 24, free energy = 116145380.68378504, relative change = 0.014889268705796585
Cycle 25, free energy = 116145149.78708827, relative change = 0.01480411872791112
Cycle 26, free energy = 116144920.28213765, relative change = 0.014501497970191363
Cycle 27, free energy = 116144713.60652064, relative change = 0.012890664639696323
Cycle 28, free energy = 116144502.05839881, relative change = 0.013022740527431069
Cycle 29, free energy = 116144301.45314702, relative change = 0.012198465676758327
Cycle 30, free energy = 116144116.46908307, relative change = 0.01112344487312083
Cycle 31, free energy = 116143958.37975559, relative change = 0.009416695913715217
Cycle 32, free energy = 116143801.04031198, relative change = 0.009285009210343805
Cycle 33, free energy = 116143662.98354504, relative change = 0.008081249723428618
Cycle 34, free energy = 116143539.59148137, relative change = 0.007171045704029469
Cycle 35, free energy = 116143421.58868587, relative change = 0.006811133634503649
Cycle 36, free energy = 116143316.40447883, relative change = 0.006034605813948098
Cycle 37, free energy = 116143209.34806436, relative change = 0.006104523606064881
Cycle 38, free energy = 116143101.62979405, relative change = 0.006104766572120824
Cycle 39, free energy = 116142995.5464166, relative change = 0.005976182071222325
Cycle 40, free energy = 116142883.74259001, relative change = 0.006259020148468852
Cycle 41, free energy = 116142771.13466519, relative change = 0.00626454340479123
Cycle 42, free energy = 116142669.30051611, relative change = 0.005633269020063474
Cycle 43, free energy = 116142570.7915425, relative change = 0.0054197924967839765
Cycle 44, free energy = 116142486.87957822, relative change = 0.004595474533142033
Cycle 45, free energy = 116142410.70759594, relative change = 0.004154261236141418
Cycle 46, free energy = 116142328.08621898, relative change = 0.004485784850808166
Cycle 47, free energy = 116142240.77240023, relative change = 0.004718186056528753
Cycle 48, free energy = 116142160.27877961, relative change = 0.004330804836951164
Cycle 49, free energy = 116142074.45831496, relative change = 0.004596183020642024
Cycle 50, free energy = 116141986.67349267, relative change = 0.0046793861513973745
Cycle 51, free energy = 116141900.44536145, relative change = 0.0045753761584171
Cycle 52, free energy = 116141812.76842976, relative change = 0.004630708166789479
Cycle 53, free energy = 116141726.5323046, relative change = 0.0045339607031974795
Cycle 54, free energy = 116141641.80092287, relative change = 0.004435089489318731
Cycle 55, free energy = 116141565.53385688, relative change = 0.003976169296180571
Cycle 56, free energy = 116141499.5687752, relative change = 0.003427290543820727
Cycle 57, free energy = 116141439.23050363, relative change = 0.0031251460951711666
Cycle 58, free energy = 116141377.7343941, relative change = 0.0031750021325663426
Cycle 59, free energy = 116141320.46528657, relative change = 0.0029480482211354116
Cycle 60, free energy = 116141264.21385422, relative change = 0.002887300597644794
Cycle 61, free energy = 116141205.6943079, relative change = 0.002994724133015651
Cycle 62, free energy = 116141143.42748977, relative change = 0.003176368426938569
Cycle 63, free energy = 116141080.49509944, relative change = 0.0032000475618261057
Cycle 64, free energy = 116141016.45087858, relative change = 0.003246012097287603
Cycle 65, free energy = 116140934.30808872, relative change = 0.004146057144084983
Cycle 66, free energy = 116140858.55458456, relative change = 0.0038090017715650373
Cycle 67, free energy = 116140796.46810387, relative change = 0.003112087654475641
Cycle 68, free energy = 116140743.35277481, relative change = 0.0026553386771090643
Cycle 69, free energy = 116140697.4604658, relative change = 0.002288994331170984
Cycle 70, free energy = 116140656.09010112, relative change = 0.0020592019228152974
Cycle 71, free energy = 116140609.21567175, relative change = 0.0023277346906870632
Cycle 72, free energy = 116140548.46245335, relative change = 0.0030078661518065306
Cycle 73, free energy = 116140496.47233486, relative change = 0.0025674002701816952
Cycle 74, free energy = 116140450.7249924, relative change = 0.0022540244900417193
Cycle 75, free energy = 116140407.35619111, relative change = 0.0021322747032527325
Cycle 76, free energy = 116140366.4018087, relative change = 0.002009520845450753
Cycle 77, free energy = 116140324.888154, relative change = 0.0020328220413124336
Cycle 78, free energy = 116140288.33593163, relative change = 0.0017866749255467263
Cycle 79, free energy = 116140255.57571703, relative change = 0.0015987612168851038
Cycle 80, free energy = 116140220.10792896, relative change = 0.001727905163999072
Cycle 81, free energy = 116140178.85139069, relative change = 0.002005887452448486
Cycle 82, free energy = 116140135.28048724, relative change = 0.002113933401344278
Cycle 83, free energy = 116140095.2162508, relative change = 0.0019400290966726933
Cycle 84, free energy = 116140059.20730874, relative change = 0.0017406246646787457
Cycle 85, free energy = 116140020.39582665, relative change = 0.0018725826006942212
Cycle 86, free energy = 116139982.82920367, relative change = 0.0018092411530189656
Cycle 87, free energy = 116139949.08947429, relative change = 0.0016222985076711197
Cycle 88, free energy = 116139909.11382177, relative change = 0.0019184512257116942
Cycle 89, free energy = 116139868.38153568, relative change = 0.0019509488018959607
Cycle 90, free energy = 116139828.86736621, relative change = 0.0018890296478457215
Cycle 91, free energy = 116139791.31623438, relative change = 0.0017919670018863947
Cycle 92, free energy = 116139749.15294811, relative change = 0.0020080220613000683
Cycle 93, free energy = 116139704.05432737, relative change = 0.0021432138247999164
Cycle 94, free energy = 116139660.38922814, relative change = 0.0020707917572923592
Cycle 95, free energy = 116139613.9653456, relative change = 0.0021967889329247894
Cycle 96, free energy = 116139566.15619923, relative change = 0.00225723331162292
Cycle 97, free energy = 116139521.28880166, relative change = 0.002113865397267175
Cycle 98, free energy = 116139475.71970008, relative change = 0.0021423257974812772
Cycle 99, free energy = 116139430.86500917, relative change = 0.002104302009728437
Cycle 100, free energy = 116139387.98224562, relative change = 0.0020077523123685336
Finished training in 18460.39s : active states = 6






Now, checking out Gamma, you’ll see it’s got the same number of points as the concatenated dataset (335356 ). Each column in Gamma stands for one of the six different states.
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Gamma_tde.shape
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(335356, 6)







Reconstruct the shape of Gamma

Now, let’s reshape Gamma to match the original dataset by padding the data. We’ll use the auxiliary.padGamma function, which takes Gamma, T, and option as inputs. * Gamma: This is the Gamma we obtained from the TDE-HMM. * T: Represents the desired number of data points for each trial, which needs to go back from 236 to 250. We can obtain T using the auxiliary.get_T function, which requires the original indices idx_trials as input. * option: A
dictionary where the key can be either “embeddedlags” or “order”. Since we’re using lags in this case, we set the key to “embeddedlags,” and the value is the variable lag_val.
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# Get T
T = auxiliary.get_T(idx_trials)
# Define options
options ={'embeddedlags':lag_val}
Gamma =auxiliary.padGamma(Gamma_tde,T,options=options)







Look at Gamma
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#Look at shape for Gamma and D_con
Gamma.shape, D_con.shape
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((355250, 6), (355250, 16))






Now, you’ll notice that the number of data points in both Gamma and D_con are back in sync.

Taking a closer look at the padding for the initial trial in state 1, you can observe that padding has been applied to the first 7 data points and the last 7 data points.
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# As we can see the padding works, since the first and last 7 numbers
# has been added to the timepoints for every trial
Gamma[:10,0].round(3),Gamma[240:250,0].round(3)
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(array([0.358, 0.358, 0.358, 0.358, 0.358, 0.358, 0.358, 0.   , 0.   ,
        0.   ]),
 array([0.968, 0.998, 0.999, 0.358, 0.358, 0.358, 0.358, 0.358, 0.358,
        0.358]))









Data restructuring

Now we have trained our HMM and got our Gamma values we need to restructure the data back to the original data structure. In this case we are not doing HMM-aggregated statistics, but we will instead perform the statistical testing per time point. We will acheive this by applying the function reconstruct_concatenated_design. It takes a concatenated 2D matrix and converts it into a 3D matrix. So, it will convert Gamma, shaped like [355250, 6] back to the original format for number
of time points and trials shaped like [250, 1421, 6] (timepoints, trials, states).
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# Reconstruct the Gamma matrix
n_timepoints, n_trials, n_channels = D_trials.shape[0],D_trials.shape[1],Gamma.shape[1]
Gamma_reconstruct =statistics.reconstruct_concatenated_design(Gamma,n_timepoints=n_timepoints, n_trials=n_trials, n_channels=n_channels)
Gamma_reconstruct.shape
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(250, 1421, 6)






As a sanity check we will see if Gamma_reconstruct is actually structured correctly by comparing it with Gamma.


To do this, we can compare a slice of our 3D-matrix, like Gamma_reconstruct[:, 0, :], with the corresponding slice in the concatenated 2D-data, Gamma[0:250, :].

If the comparison Gamma_reconstruct[:, 0, :] == Gamma[0:250, :] holds true, we’re essentially confirming that all timepoints in the first trial align perfectly with the first 250 values in our concatenated data.




[69]:





Gamma_reconstruct[:, 0, :] == Gamma[0:250, :]
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array([[ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       ...,
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True]])






What we can see here is that all the values are True and we therefore know that the restructuring is performed correctly.



3. Across-trials within session testing

As we move on to the next part of this tutorial, let’s dive into how we can use the across_trials_within_subject function. This function helps us to find connections between HMM state occurrences (D) and behavioral variables or individual traits (R) using permutation testing.


Permutation testing

Permutation testing does not assume any particular data distribution and the procedure shuffles the data around to create a null distribution. This null distribution comes in handy for testing our hypotheses without making any bold assumptions about the data. This null distribution becomes our benchmark to test the big question: is there any real difference or relationship between the variables we’re interested in?



[image: image.png]

Figure 5C in Vidaurre et al. 2023 [https://arxiv.org/abs/2312.07151#:~:text=GLHMM%20is%20implemented%20as%20a,sets%20at%20reasonable%20computational%20time]: A 9 x 4 matrix representing permutation testing across trials. Each number corresponds to a trial within a session, and permutations are performed within sessions.

Hypothesis * Null Hypothesis (H0): No significant relationship exists between the independent variables and the dependent variable. * Alternative Hypothesis (H1): There is a significant relationship between the independent variables and the dependent variable.


Across-trials within sessions testing - Regression

In regression analysis, we are trying to explain the relationships between predictor variables (D) the response variable (R). Our goal is to identify the factors that contribute to changes in our signal over time. The permutation test for explained variance assess the statistical significance of relationships between state time courses (D) and behavioral measurements (R). A significant result indicates that certain patterns within the state time courses (Gamma_reconstruct) significantly
contribute in explaining why the behavioral measurements varies across trials. A non-significant result suggests that he state time courses may not play a role in accounting for the variability of the behavioral measurements.


Run the across_trials_within_session function:

To set the wheels in motion for the across_trials_within_session function, input the variables Gamma_reconstruct (D) and R_trials (R). Additionally, you can account for potential confounding variables by regressing them out through permutation testing. Initiating regression-based permutation testing involves setting method="regression". For an in-depth comprehension of the function look at the documentation.
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import statistics_new as statistics
# Set the parameters for across sessions within subject testing
method = "regression"
Nperm = 1000 # Number of permutations (default = 1000)
test_statistics_option = True

# Perform across-trial testing
result_regression  =statistics.test_across_sessions_within_subject(Gamma_reconstruct, R_trials, idx_trials_session,method=method,
                                                                 Nperm=Nperm, test_statistics_option=test_statistics_option)













performing permutation testing per timepoint












100%|██████████| 250/250 [05:16<00:00,  1.26s/it]






We can now examine the local result_regression variable.
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result_regression
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{'pval': array([0.21178821, 0.18681319, 0.1968032 , 0.17982018, 0.18681319,
        0.1998002 , 0.17982018, 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.001998  , 0.000999  , 0.000999  , 0.000999  , 0.001998  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.004995  , 0.00699301,
        0.01798202, 0.01498501, 0.00599401, 0.001998  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.001998  , 0.000999  ,
        0.004995  , 0.01198801, 0.08191808, 0.29370629, 0.4975025 ,
        0.53346653, 0.21078921, 0.06793207, 0.00999001, 0.01298701,
        0.002997  , 0.001998  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.000999  , 0.000999  ,
        0.000999  , 0.000999  , 0.000999  , 0.001998  , 0.00599401,
        0.00799201, 0.02497502, 0.08591409, 0.24375624, 0.20679321,
        0.20779221, 0.07492507, 0.04295704, 0.02297702, 0.02297702,
        0.04795205, 0.01398601, 0.01498501, 0.002997  , 0.01698302,
        0.01798202, 0.04295704, 0.04995005, 0.11688312, 0.37062937,
        0.3956044 , 0.51348651, 0.6953047 , 0.64635365, 0.81618382,
        0.89110889, 0.90509491, 0.69430569, 0.74925075, 0.78021978,
        0.88911089, 0.75224775, 0.64435564, 0.74825175, 0.73026973,
        0.88511489, 0.94105894, 0.93406593, 0.87412587, 0.63236763,
        0.50649351, 0.58141858, 0.72327672, 0.51248751, 0.35464535,
        0.29370629, 0.26673327, 0.26873127, 0.32667333, 0.51548452,
        0.54345654, 0.75024975, 0.87512488, 0.95104895, 0.8021978 ,
        0.41658342, 0.16783217, 0.0959041 , 0.1038961 , 0.15984016,
        0.24975025, 0.42557443, 0.72627373, 0.76723277, 0.81118881,
        0.83216783, 0.96703297, 0.995005  , 0.96803197, 0.82217782,
        0.78921079, 0.70629371, 0.48251748, 0.33566434, 0.24875125,
        0.1968032 , 0.13886114, 0.1038961 , 0.05194805, 0.03496503,
        0.04295704, 0.15484515, 0.39160839, 0.35564436, 0.43656344,
        0.5034965 , 0.62537463, 0.51648352, 0.54045954, 0.66633367,
        0.76223776, 0.62037962, 0.73026973, 0.66733267, 0.52747253,
        0.7042957 , 0.85514486, 0.7982018 , 0.58841159, 0.36963037,
        0.5974026 , 0.77522478, 0.81618382, 0.93106893, 0.91708292,
        0.4965035 , 0.13286713, 0.01398601, 0.01498501, 0.00699301,
        0.001998  , 0.00999001, 0.002997  , 0.000999  , 0.001998  ,
        0.03396603, 0.14285714, 0.20579421, 0.32367632, 0.24675325,
        0.26873127, 0.36663337, 0.31668332, 0.30969031, 0.33566434,
        0.38061938, 0.19180819, 0.45254745, 0.6013986 , 0.53046953,
        0.52447552, 0.5014985 , 0.38161838, 0.6003996 , 0.77522478,
        0.86613387, 0.87612388, 0.90709291, 0.1978022 , 0.19280719,
        0.21078921, 0.2017982 , 0.21778222, 0.21578422, 0.1998002 ]),
 'base_statistics': array([0.00505201, 0.00505201, 0.00505201, 0.00505201, 0.00505201,
        0.00505201, 0.00505201, 0.03000285, 0.03061919, 0.03662714,
        0.04477545, 0.05773719, 0.0713659 , 0.08548336, 0.09293098,
        0.09673491, 0.09796783, 0.09871701, 0.09918806, 0.09106669,
        0.0815303 , 0.07028617, 0.06469223, 0.05735157, 0.05685212,
        0.05524794, 0.05182341, 0.04942397, 0.04672765, 0.04743565,
        0.04710801, 0.04803083, 0.05141906, 0.05658091, 0.06038649,
        0.0592768 , 0.05224866, 0.04905177, 0.04496182, 0.04770866,
        0.04495759, 0.03834706, 0.03273502, 0.02895222, 0.02269608,
        0.01737871, 0.01803006, 0.01408025, 0.01545414, 0.01832783,
        0.02305946, 0.02761286, 0.03332051, 0.03615857, 0.03597035,
        0.03587455, 0.03735255, 0.04584777, 0.04308681, 0.03486055,
        0.02984633, 0.0233757 , 0.0151615 , 0.01242821, 0.01044631,
        0.00939711, 0.00929125, 0.01165582, 0.01584905, 0.02102382,
        0.02971166, 0.03132745, 0.03219508, 0.03371067, 0.03255627,
        0.0297058 , 0.02644577, 0.02022064, 0.0168084 , 0.01365077,
        0.01173681, 0.01032596, 0.00683546, 0.00444429, 0.00301654,
        0.00298279, 0.0050289 , 0.00766901, 0.01048671, 0.01079316,
        0.01398312, 0.01675818, 0.01634548, 0.01917057, 0.01959089,
        0.02172246, 0.02305763, 0.02383258, 0.02315507, 0.0209419 ,
        0.01745908, 0.01435405, 0.0151978 , 0.01381169, 0.01237543,
        0.01069623, 0.00858284, 0.00648114, 0.00482958, 0.00491061,
        0.00485674, 0.00671114, 0.00765917, 0.00859014, 0.00856074,
        0.00771362, 0.00901624, 0.01030995, 0.01151837, 0.00992102,
        0.00874599, 0.0080667 , 0.00759268, 0.00607711, 0.00399813,
        0.00375592, 0.00314905, 0.00216576, 0.00225535, 0.00156611,
        0.00109609, 0.0010872 , 0.00208015, 0.00187968, 0.00178657,
        0.00117667, 0.00188787, 0.0023333 , 0.00191298, 0.0020296 ,
        0.00115384, 0.0008422 , 0.00086685, 0.00137662, 0.00254363,
        0.0029988 , 0.00271443, 0.00203468, 0.00319907, 0.00429023,
        0.00473692, 0.00500512, 0.00506436, 0.00440819, 0.0032981 ,
        0.00291108, 0.00201544, 0.00140637, 0.00088644, 0.00168638,
        0.00359122, 0.00536164, 0.00616275, 0.00654861, 0.00547861,
        0.00469614, 0.00362861, 0.00230509, 0.00190922, 0.00167321,
        0.00162941, 0.00076753, 0.00022069, 0.0005429 , 0.00177344,
        0.00187999, 0.0022457 , 0.00281013, 0.00360773, 0.00364705,
        0.00419594, 0.00525794, 0.00551508, 0.00658858, 0.00727666,
        0.00738234, 0.0052562 , 0.00360543, 0.00387275, 0.00342561,
        0.00330831, 0.00276496, 0.00320855, 0.00295506, 0.0022721 ,
        0.00196667, 0.00253579, 0.00199069, 0.00237248, 0.00286769,
        0.00226601, 0.00155949, 0.00172286, 0.00261602, 0.00278175,
        0.00185792, 0.00125649, 0.00106426, 0.00054122, 0.00124221,
        0.0030084 , 0.00571426, 0.00840767, 0.00867519, 0.00975739,
        0.00963045, 0.01009929, 0.01100882, 0.0117654 , 0.01084336,
        0.00799983, 0.00545898, 0.00468757, 0.00410854, 0.00448673,
        0.0039535 , 0.00347814, 0.00384237, 0.00413233, 0.00404138,
        0.00382269, 0.00521039, 0.00341019, 0.00268653, 0.00312422,
        0.00313836, 0.00320455, 0.00364471, 0.00236134, 0.00181175,
        0.00137186, 0.00117356, 0.00114366, 0.00505201, 0.00505201,
        0.00505201, 0.00505201, 0.00505201, 0.00505201, 0.00505201]),
 'test_statistics': array([[0.00505201, 0.00417411, 0.0020275 , ..., 0.00077731, 0.00172477,
         0.01072953],
        [0.00505201, 0.00503625, 0.003558  , ..., 0.00819535, 0.0047736 ,
         0.00159502],
        [0.00505201, 0.00371904, 0.00267085, ..., 0.00306927, 0.00921225,
         0.00138642],
        ...,
        [0.00505201, 0.00221553, 0.00239739, ..., 0.00064058, 0.00500308,
         0.00940221],
        [0.00505201, 0.00356053, 0.00212609, ..., 0.00316208, 0.00412661,
         0.00221572],
        [0.00505201, 0.00604006, 0.00317971, ..., 0.00286154, 0.00289073,
         0.0028688 ]]),
 'test_type': 'test_across_subjects',
 'method': 'regression',
 'test_combination': False,
 'max_correction': False,
 'performed_tests': {'t_test_cols': [], 'f_test_cols': []},
 'Nperm': 1000}






What we can see here is that result_regression is a dictionary containing the outcomes of a statistical analysis conducted using the specified method and test_type.

Let us break it down: * pval: This array houses the p-values generated from the permutation test.


	base_statistics: Stores the base statistics of the tests


	test_statistic: Will by default always return a list of the base (unpermuted) statistics when test_statistic_option=False. This list can store the test statistics associated with the permutation test. It provides information about the permutation distribution that is used to calculate the p-values. The output will exported if we set test_statistic_option=True


	test_type: Indicates the type of permutation test performed. In this case, it is across_trials_within_session.


	method: Specifies the analytical method employed, which is 'regression', which means that the analysis is carried out using regression-based permutation testing.


	test_combination Specifies if calculates geometric means of p-values using permutation testing has been performed.


	max_correction: Boolean value that indicates whether Max correction has been applied when performing permutation testing


	performed_tests: A dictionary that marks the columns in the test_statistics or p-value matrix corresponding to the (q dimension) where t-tests or F-tests have been performed.


	Nperm: Is the number of permutations that has been performed.





Visualization of results

Now that we have performed our test, we can then visualize the p-value array.

We will use the function plot_heatmap from the graphics module.



Note: Elements marked in red indicate a p-value below 0.05, signifying statistical significance.


[74]:





# The alpha score we set for the p-values
alpha = 0.05
# Plot p-values
graphics.plot_p_values_over_time(result_regression["pval"], title_text ="P-values over time",figsize=(10, 3), xlabel="Time points", alpha=alpha)
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Multiple Comparison

To be sure there is no type 1 error, we can apply the Benjamini/Hochberg to control the False Discovery Rate




[75]:





pval_corrected, rejected_corrected =statistics.pval_correction(result_regression["pval"], method='fdr_bh')
# Plot p-values
graphics.plot_p_values_over_time(pval_corrected, title_text ="Corrected p-values over time",figsize=(10, 3), xlabel="Time points")
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Cluster based permutation testing

In order to provide a more strict control over Type I mistakes, we can also apply cluster-based permutation testing to control the Family-Wise Error Rate when conducting multiple comparisons. To use this p-value correction, set test_statistics_option=True while performing permutation testing, as it is an input to the function (pval_cluster_based_correction).




[76]:





pval_cluster =statistics.pval_cluster_based_correction(result_regression["test_statistics"],result_regression["pval"])
# Plot p-values
graphics.plot_p_values_over_time(pval_cluster, title_text ="Cluster based correction of p-values over time",figsize=(10, 3), xlabel="Time points")
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Visualize average probabilities and differences

We can now compare if the results from result_regression["pval"] correspond to the difference for each state over time for the two conditions. This will be done using the function plot_condition_difference.




[77]:





# Detect the intervals of when there is a significant difference, will be highlighed
alpha = 0.05
intervals =statistics.detect_significant_intervals(pval_corrected, alpha)
# Plot the average probability for each state over time for two conditions and their difference.
graphics.plot_condition_difference(Gamma_reconstruct, R_trials, figsize=(12,3),vertical_lines=intervals , highlight_boxes=True, title="Average Probability and Differences (fdr_bh correction) ")
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[78]:





# Detect the intervals of when there is a significant difference, will be highlighed
alpha = 0.05
intervals =statistics.detect_significant_intervals(pval_cluster, alpha)
# Plot the average probability for each state over time for two conditions and their difference.
graphics.plot_condition_difference(Gamma_reconstruct, R_trials, figsize=(12,3),vertical_lines=intervals , highlight_boxes=True, title="Average Probability and Differences (cluster correction) ")
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Save the results


[79]:





io.save_statistics(result_regression, file_name="result_regression")













Statistics data saved to: c:\Users\au323479\Desktop\Permutation_test\GLHMM\Permutation_test_13-11_include_viterbi_path_permutation_matrix\result_regression.npy







Conclusion - Regression

Our exampled involved presenting participants with two distinct stimuli across multiple trials spanning 10 different sessions. Permutation testing was performed across all trials within each session while while keeping the session order the same. The analysis generated the variable result_regression[“pval”], containing 250 p-values for each time point.

After correcting for multiple comparisons using Benjamini/Hochberg, significant differences were mainly in the early and mid segments of the signal (specifically, timepoints 7 to 83, 89 to 106 and 117 to 119) between state time courses (D) and stimuli (R).

The consistent occurrence of significant effects in the early segments of the recordings for every trial suggests a robust and reliable neural reaction at the onset of the stimuli. On the other hand, the decreasing significance towards the end of the signal may indicate a diminishing neural response to the presented stimuli over time. This temporal pattern in the results implies an initial heightened attention or processing of the stimuli, followed by a reduction in neural responsiveness as the
trial progresses. The findings thus provide insights into the temporal dynamics of neural responses, indicating specific time windows of heightened sensitivity.




Across-trials within sessions testing - Correlation

In correlation analysis, our goal is to find connections between predictor variables (D) and the response variable (R). Instead of explaining the variations in signal values over time, as in regression, our interest lies in figuring out the strength of the linear relationship between the state time courses (Gamma_reconstruct) and behavioral measurements, such as our stimuli. If the result is significant, it means that certain patterns in the state time courses (Gamma_reconstruct)
contribute to explaining the variability in behavioral measurements across trials. Now if the results is non-significant, it indicates that the observed relationship might just be a random chance. It means that our state time courses might not explain the variability in behavioral measurements.


Executing the across_trials_within_session function:

To initiate the across_trials_within_session function using correlation, input the variables Gamma_reconstruct (D) and R_session (R). Additionally, you can address potential confounding variables by incorporating permutation testing.

Quick reminder: for correlation-based permutation testing, go with method="correlation" to get the correlation coefficients and p-values.




[80]:





# Set the parameters for between-subject testing
method = "univariate"
Nperm = 1000 # Number of permutations (default = 1000)
# Perform across-subject testing
result_univariate  =statistics.test_across_trials_within_session(Gamma_reconstruct, R_trials, idx_trials_session,method=method,Nperm=Nperm, test_statistics_option=True)













performing permutation testing per timepoint












100%|██████████| 250/250 [06:18<00:00,  1.51s/it]







Visualization of results

Now that we have performed our test, we can then visualize the p-value matrix.

We will use the function plot_heatmap from the graphics module.



Note: Elements marked in red indicate a p-value below 0.05, signifying statistical significance.


[81]:





# Plot p-values
alpha = 0.05 # threshold for p-values
graphics.plot_p_value_matrix(result_univariate["pval"].T, title_text ="Heatmap of p-values",figsize=(8, 5), xlabel="Time points", ylabel="HMM States", annot=False, alpha=alpha)
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Multiple Comparison

To be sure there is no type 1 error, we can apply the Benjamini/Hochberg to control the False Discovery Rate




[82]:





alpha = 0.05 # threshold for p-values
pval_corrected, rejected_corrected =statistics.pval_correction(result_univariate["pval"], method='fdr_bh', alpha=0.5)
# Plot p-values
graphics.plot_p_value_matrix(pval_corrected.T, title_text ="Heatmap of corrected p-values",figsize=(8, 5), xlabel="Time points", ylabel="HMM States", annot=False, alpha = alpha)
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Cluster based permutation testing

In order to provide a more strict control over Type I mistakes, we can also apply cluster-based permutation testing to control the Family-Wise Error Rate when conducting multiple comparisons.




[83]:





pval_cluster =statistics.pval_cluster_based_correction(result_univariate["test_statistics"],result_univariate["pval"])
# Plot p-values
graphics.plot_p_value_matrix(pval_cluster.T, title_text ="Heatmap of cluster corrected p-values",figsize=(8, 5), xlabel="Time points", ylabel="HMM States", annot=False, alpha = alpha)
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Plot Correlation Coefficients


[84]:





# Plot correlation coefficients
# Correlations between reation time and each state as function of time
graphics.plot_correlation_matrix(result_univariate["base_statistics"].T, result_univariate["performed_tests"], title_text ="Heatmap of Correlation Coefficeints",figsize=(8, 5), xlabel="Time points", ylabel="HMM States", annot=False)
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Conclusion - Correlation

In this example, the permutation testing analysis using correlation aims to study the relationship between state time courses and two different stimuli across multiple experimental trials. The resulting matrix, result_correlation["pval"], is structured as (time points x states), and it shows the trial-specific variations in the correlation between state time courses at every timepoint and the stimuli. Essentially, this matrix offers information about time-dependent and state-specific
correlation patterns.

When correcting the p-values using Benjamini/Hochberg or cluster based permutation testing, significant p-value for a specific HMM state and timepoint means that the correlation between state time courses at that timepoint and the stimuli significantly varies across experimental trials. This suggest that it is possible to pinpoint instances when changes in stimuli impact the state time courses, and thus highlight moments when stimuli induce observable effects on the state dynamics.

When looking at result_correlation["pval"], we observe time windows that shows a significant difference in the correlation between different HMM states and the stimuli. This can be interpreted as distinctive periods when specific neural states exhibit heightened responsiveness or susceptibility to the presented stimuli.
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Across-Visits Testing with glhmm toolbox [https://github.com/vidaurre/glhmm]

In this tutorial, we are going to look at how to implement the across-visits testing using the glhmm toolbox [https://github.com/vidaurre/glhmm].

In the real world scenarios, one would typically fit a Hidden Markov Model (HMM) to an actual dataset. However, for the sake of showing the concept of statistical testing, we just use synthetic data for both the independent variable and the dependent variable for the across-visits test.

First, we’ll load the synthetic data (sig_data) here [https://github.com/vidaurre/glhmm/tree/main/docs/notebooks/data_statistical_testing] and use the glhmm toolbox [https://github.com/vidaurre/glhmm] to fit a Hidden Markov Model (HMM) to the signal. The Viterbi path is then decoded and statistical testing is performed.

While the simulation process requires some explanation, executing the test itself is straightforward—simply input the simulated signal (D) and Viterbi path (R), and define the specific method you wish to employ.

The function across-visits offers a range of statistical testing methods such as regression, correlation, one vs rest, and state pairs. Each of these methods are described in the paper Vidaurre et al. 2023 [https://arxiv.org/abs/2312.07151#:~:text=GLHMM%20is%20implemented%20as%20a,sets%20at%20reasonable%20computational%20time]. This tutorial serves as a guide to navigate through these testing methodologies and offer clarity on their application and interpretation.
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Install necessary packages

Let’s start by importing the required libraries and modules.

First, we will need to import the GLHMM-package as glhmm:

If you dont have the GLHMM-package installed, then run the following command in your terminal:

pip install --user git+https://github.com/vidaurre/glhmm

To use the function glhmm.statistics.py you also need to install the library’s:

pip install statsmodels





pip install tqdm





python -m pip install -U scikit-image





```



Import libraries

Let’s start by importing the required libraries and modules.


[10]:





# Importing libraries
import seaborn as sns
import matplotlib.pyplot as plt
import os
import numpy as np
import glhmm.glhmm as glhmm
import glhmm.graphics as graphics
import glhmm.statistics as statistics










1.Load and prepare data

Synthetic data are provided as example in the folder data_statistical_testing and can be found here [https://github.com/vidaurre/glhmm/tree/main/docs/notebooks/data_statistical_testing]. The file sig_data.npy contains synthetic timeseries.

The data need to a specific structure when doing this tutorial. The array should be shaped as ((number of subjects/sessions * number of timepoints), number of features). This structure means that all subjects and/or sessions are concatenated along the first dimension, while the second dimension represents the number of features, such as parcels or channels.

In our example, we’ve generated timeseries for 5 subjects and 1 feature. Each subject’s data spans 1,000 timepoints. Consequently, sig_data is shaped as [5000, 1], reflecting the concatenation of all subjects along the first dimension and the presence of 1 feature.


[2]:





# Folder path
folder_path = "\\data_statistical_testing"

# Get the current directory
current_directory = os.getcwd()

# Load sig_data
data_file = '\\sig_data.npy'
file_path = os.path.join(current_directory + folder_path + data_file)
sig_data = np.load(file_path)







Let’s try to see the shape of sig_data


[3]:





print(f"Data dimension of sig_data: {sig_data.shape}")













Data dimension of sig_data: (5000, 1)







Setting Timestamp Indices

Before initiating and training a Hidden Markov Model (HMM), it’s necessary to define the indices in the concatenated timeseries that delineate the beginning and end of individual subjects or sessions. These indices should be organized in the shape [n_subjects, 2].



For instance, in our synthetic data scenario with 5 subjects and 1 feature, each subject exhibiting 1,000 timepoints, we utilize the function get_timestamp_indices to create the timestamp indices (T_idx). This resulting array will have the shape (5, 2), containing the indices that signify the start and end points for each subject’s timeseries.

To run the function get_timestamp_indices we need to provide it with the inputs for the number of time points (n_timepoints) and the number of subjects (n_subjects). This will result with a a precise delineation of subject boundaries within the concatenated timeseries.


[4]:





n_subjects = 5
n_timepoints = 1000
#Generate indices of the timestamps for each subject in the data.
T_idx =statistics.get_timestamp_indices(n_timepoints, n_subjects)







Let’s look at how T_idx looks like.


[5]:





T_idx








[5]:







array([[   0, 1000],
       [1000, 2000],
       [2000, 3000],
       [3000, 4000],
       [4000, 5000]])








2. Load data or initialise and train HMM

You can either load the Viterbi path from a pretrained model or train your own model. If you want to reproduce the same Viterbi path as in this notebook, simply load the file vpath.npy from data_statistical_testing [https://github.com/vidaurre/glhmm/tree/main/docs/notebooks/data_statistical_testing] folder; otherwise, the decoder will produce a different Viterbi path.

# Get the current directory
current_directory = os.getcwd()
folder_name = "\\data_statistical_testing"

# Load the Viterbi path
file_name = '\\vpath.npy'
file_path = os.path.join(current_directory+folder_name+file_name)
vpath = np.load(file_path)





If you decide to train your own HMM model, then we will first need to initialize the hmm object and set the hyperparameters according to our modeling preferences.

In this case, we choose not to model an interaction between two sets of variables in the HMM states, so we set model_beta='no'. For our estimation, we choose K=5 states. If you wish to model a different number of states, simply adjust the value of K.

Our modeling approach involves representing states as Gaussian distributions with mean and a full covariance matrix. This means that each state is characterized by a mean amplitude and a functional connectivity pattern. To specify this configuration, set covtype='full'. If you prefer not to model the mean, you can include model_mean='no'. Optionally, you can check the hyperparameters to make sure that they correspond to how you want the model to be set up.


[7]:





# 1. Create an instance of the glhmm class
K = 5 # number of states
hmm = glhmm.glhmm(model_beta='no', K=K, covtype='full')
print(hmm.hyperparameters)













{'K': 5, 'covtype': 'full', 'model_mean': 'state', 'model_beta': 'no', 'dirichlet_diag': 10, 'connectivity': None, 'Pstructure': array([[ True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True]]), 'Pistructure': array([ True,  True,  True,  True,  True])}







Train an HMM

Now, let’s proceed to train the HMM using the loaded data (sig_data) and time indices (T_idx).



Since in this case, we are not modeling an interaction between two sets of timeseries but opting for a “classic” HMM, we set X=None. For training, Y should represent the timeseries from which we aim to estimate states (sig_data), and indices should encompass the beginning and end indices of each subject (T_idx).


[16]:





Gamma,Xi,FE = hmm.train(X=None, Y=sig_data, indices=T_idx)













Init repetition 1 free energy = 7306.219285915042
Init repetition 2 free energy = 7137.718493956065
Init repetition 3 free energy = 7197.711751602226
Init repetition 4 free energy = 7309.332005100117
Init repetition 5 free energy = 7187.246147779373
Best repetition: 2
Cycle 1 free energy = 7784.359946881526
Cycle 2 free energy = 7138.082408735108
Cycle 3, free energy = 7137.31680651657, relative change = 0.001183232107377733
Cycle 4, free energy = 7136.862281556991, relative change = 0.0007019715806258782
Cycle 5, free energy = 7136.238974095379, relative change = 0.0009617146918307214
Cycle 6, free energy = 7135.447424177814, relative change = 0.0012198098971279066
Cycle 7, free energy = 7134.528227447255, relative change = 0.0014145150245356826
Cycle 8, free energy = 7133.521468842585, relative change = 0.00154686398951596
Cycle 9, free energy = 7132.539680681368, relative change = 0.001506225277315324
Cycle 10, free energy = 7131.749821143982, relative change = 0.0012103084310754856
Cycle 11, free energy = 7131.223648850684, relative change = 0.0008056087142678029
Cycle 12, free energy = 7130.914695507221, relative change = 0.0004728067773288794
Cycle 13, free energy = 7130.7394753722965, relative change = 0.00026807626529802683
Cycle 14, free energy = 7130.637406002455, relative change = 0.00015613561329046714
Cycle 15, free energy = 7130.57540905701, relative change = 9.482779395633634e-05
Cycle 16, free energy = 7130.5363742050795, relative change = 5.970242365324856e-05
Cycle 17, free energy = 7130.511140955572, relative change = 3.859187212508966e-05
Cycle 18, free energy = 7130.494529877573, relative change = 2.5404429668875392e-05
Cycle 19, free energy = 7130.483460461056, relative change = 1.6928910500319018e-05
Cycle 20, free energy = 7130.4760246172655, relative change = 1.1371810098600975e-05
Cycle 21, free energy = 7130.471003862026, relative change = 7.678299645612827e-06
Cycle 22, free energy = 7130.467602835494, relative change = 5.201202556792485e-06
Cycle 23, free energy = 7130.465294422135, relative change = 3.5302526949529197e-06
Cycle 24, free energy = 7130.463725712502, relative change = 2.39901926656757e-06
Reached early convergence
Finished training in 4.09s : active states = 5







Decode Viterbi path

Now that our HMM is trained, we move on to the decoding phase to calculate the Viterbi path. The Viterbi path represents the most probable state sequence given an observation sequence and the trained HMM.




[19]:





vpath = hmm.decode(X=None, Y=sig_data, indices=T_idx, viterbi=True)
vpath








[19]:







array([[0., 0., 0., 0., 1.],
       [0., 0., 0., 0., 1.],
       [0., 0., 0., 0., 1.],
       ...,
       [1., 0., 0., 0., 0.],
       [1., 0., 0., 0., 0.],
       [1., 0., 0., 0., 0.]])







Visualize Viterbi path

Now, let’s visualize the distinct states in the Viterbi path from our trained Hidden Markov Model.

The plot provides a clear depiction of each time point assigned to a specific HMM state, with each state represented by a distinct color. This visualization allows us to easily discern the temporal distribution and transitions between different states.


[ ]:





graphics.plot_vpath(vpath, yticks=True, figsize=(6,4), ylabel="States")








[11]:





### Original figure by loading the file vpath.npy
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Plot Viterbi path and discrete states

We can enhance our visualization by plotting the discrete states alongside the Viterbi path. Similar to our previous plot, this representation illustrates each time point assigned to a specific HMM state, with each state uniquely color-coded.



However, this updated plot introduces an additional layer. At the top of the figure, a secondary plot showcases each state’s assignment to a specific value on the y-axis. This value corresponds to a particular HMM state. For instance, if we observe the value 5 on the y-axis, it aligns with the blue color, indicating that this value corresponds to state 5 in our HMM. This figure structure follows the same representation as figure 3D in our paper.


[ ]:





# Create a 1D array from the one-hot encoded Viterbi path data
vpath_1D=statistics.generate_vpath_1D(vpath)
# Convert the signal to be in a range from 0 to 1,
sig_state = vpath_1D/np.max(vpath_1D)
# Plot discrete states with the Viterbi path
graphics.plot_vpath(vpath,sig_state, yticks=True, figsize=(6,4), ylabel="States")








[12]:





### Original figure by loading the file vpath.npy
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Plot Viterbi path and signal

Finally, we can further improve our visualization by plotting the signal (D) alongside the Viterbi path (R). This representation maintains the color-coded illustration of each time point assigned to a specific HMM state. To create this plot, it’s necessary to normalize the data, ensuring it ranges from 0 to 1 to align with the values of vpath. It’s important to note that this normalization is only for visualization purposes, which allow us to overlay the signal with the Viterbi
path and gain insights into how well the model captures the underlying dynamics.




[ ]:





# Normalize the sig_data to the range [0, 1]
min_value = np.min(sig_data)
max_value = np.max(sig_data)
normalized_sig_data = ((sig_data - min_value) / (max_value - min_value))

# Plot vpath and sig_data
graphics.plot_vpath(vpath,normalized_sig_data, figsize=(6,4))








[27]:





### Original figure by loading the file vpath.npy
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Let’s delve into the values assigned to each state. To achieve this, we calculate the average of the values associated with each state.

This brief analysis provides insights into the typical or central values characterizing each state. By examining these averages, we gain a clearer understanding of the distinctive characteristics and patterns represented by the different states in our HMM.


[ ]:





K=5
vpath_1D=statistics.generate_vpath_1D(vpath)
val_state =[np.mean(sig_data[vpath_1D == i+1]) for i in range(K) ]
val_state








[28]:





### Original figure by loading the file vpath.npy








[28]:







[4.912042797300882,
 -0.05858422375450776,
 -3.795696791047377,
 2.352225972831181,
 -2.5030418147224505]






The above figure shows an relation between the simulated measurements (sig_data) and the Viterbi path (vpath). Notably, a closer examination of the variable val_state shows distinct values assigned to each specific state:


	State 1 (green) aligns with highest value


	State 2 (yellow) corresponds to values in the middle, close to 0.


	State 3 (purple) corresponds to the lowest negative values.


	States 4 (red) and State 5 (blue) are values that fall between the extremes values. This gives us a perspective on the behavioral dynamics across different states on our signal.







2. Permutation testing tutorial - Across-Visits

As we transition to the next phase of this tutorial, we will learn how to apply the across_visits function to uncover relationships between HMM state time courses (D) and a continuously measured variable (R) using permutation testing.


Permutation testing

Permutation testing is a non-parametric resampling technique that assesses statistical significance without assuming any data distribution. By randomly reshuffling measured data, it generates a null distribution, which can be used to test the null hypothesis — that there is no difference or relationship between variables of interest to be tested




Across visits - Regression

In regression analysis, we are trying to explain the relationships between predictor variables (D), such as the simulated signal, and the Viterbi path (R).


Understanding Regression:

The objective is to discern the factors contributing to changes in signal values over time. Specifically, by examining the amount of explained variance, it can be used to analyze whether the Viterbi path, characterized by different states, plays a significant role in explaining the observed variability in signal values over time.




Permutation Test for Explained Variance:

The permutation test for explained variance is a useful method to assess the statistical significance of relationships between the signal (D) and the Viterbi path (R). A significant result implies that specific states in the Viterbi path contribute significantly to explaining why signal values vary over time. A non-significant result, on the other hand, suggests that the observed relationship can be attributed to random chance, implying that the Viterbi path may not play a significant role in
accounting for the signal’s variability.




Explore data

First, let us look at the data that we are interested in:




[8]:





print(f"Data dimension of simulated signal: {sig_data.shape}")
print(f"Data dimension of viterbi path: {vpath.shape}")













Data dimension of simulated signal: (5000, 1)
Data dimension of viterbi path: (5000, 5)







In this example, simulated signal, represented as a 5000x1 array, is a continuous variable. The corresponding Viterbi path is a 5000x4 matrix, representing discrete states for each time point based on a simulated path. Each state is one-hot encoded as a binary vector.

Running the across_visits function requires providing inputs: D_data (the simulated signal) and R_data (the Viterbi path, defined with five states - n_states = 4 in this case). To initiate regression-based permutation testing, set method="regression".

For a deeper look at the function look at the documentation.




[11]:





# Set the parameters for across_visits testing
method = "regression"
Nperm = 1000 # Number of permutations (default = 1000)
n_states = 5
result_regression  =statistics.test_across_visits(sig_data, vpath, method=method,Nperm=Nperm, n_states=n_states)













100%|██████████| 1000/1000 [00:10<00:00, 91.34it/s]






We can now examine the local result_regression variable.


[12]:





result_regression








[12]:







{'pval': array(0.5044955),
 'base_statistics': array(-5.85084649),
 'test_statistics': [],
 'test_type': 'test_across_subjects',
 'method': 'regression',
 'max_correction': False,
 'performed_tests': {'t_test_cols': [], 'f_test_cols': []},
 'Nperm': 1000}






What we can see here is that result_regression is a dictionary that contains the output of a statistical analysis applied using the specified method and test type.

Let us break it down:


	pval: This array holds the p-values resulting from the permutation test.


	corr_coef: Currently an empty list. It is intended to store correlation coefficients if correlation is involved in the analysis. In this case, the correlation coefficients are not calculated when we have set method="regression".


	test_statistic: Currently an empty list. This list could can store the test statistics associated with the permutation test. It provides additional information about the permutation distribution that is used to calculate the p-values. The output will exported if we set test_statistic_option=True


	pval_list: This list is currently empty. It stores the p-values concurrently calculated with correlation coefficients when method = "correlation_com" using the scipy.stats.pearsonr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html] module. Note: "correlation_com" stands for correlation combined and provides both the statistical significance of Pearson’s correlation coefficient and a 2-tailed p-value. The output is exported when
method = "correlation_com" and test_statistic_option=True


	test_type: Indicates the type of permutation test performed. In this case, it is across_visits.


	method: Specifies the method employed in the analysis. Here, it is 'regression', indicating that the analysis is conducted using regression-based permutation testing.





Visualization of results

Now that we have performed our test, we can then visualize the p-value array.

We will import the function plot_p_values_bar from module graphics.py




[13]:





# Plot p-values
graphics.plot_p_values_bar(result_regression["pval"], title_text ="P-value for explained variance",
                      figsize=(3, 3), alpha=0.05, variables=[""])
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Conclusion - Regression

The permutation test for explained variance indicated that there is insufficient evidence to reject the null hypothesis. We can see that the base_statistic is negative ('base_statistics': -5.85). This suggests that the model is performing worse than a simple horizontal line representing the mean of the dependent variable. Hence, the model is not capturing the variance in the data and may be providing predictions that are systematically worse than using the mean and is therefore not an
ideal statistics to apply on this dataset. The categorical and discrete structure of the Viterbi path complicates the interpretation. Traditional statistical approaches, particularly those based on continuous variables, may not be immediately relevant or may lose sensitivity when applied to discrete sequences.



Alternatively, we can employ F-statistics on the Hidden Markov Model (HMM) states and showed a significant difference, and therefore suggests variation in HMM states. A significant F-statistic implies that there are substantial differences in the means of these states. However, it is important to note that while the F-statistics test shows a significant difference, it does not provide detailed insights into the specific nature of these differences between states.



Across visits - Univariate test

In univariate test analysis, we are interested in understanding the impact of discrete states in the Viterbi path (R_data) on the variability observed in the signal (D_data).

The goal is to assess the statistical significance of the relationship between specific states in the Viterbi path and the variations in continuous signal values over time using a permutation test. This across visits test helps us determine whether certain states in the Viterbi path significantly contribute to the observed variations in signal values. Conversely, a non-significant result suggests that the observed relationship may be due to random chance, and the Viterbi path may not
significantly influence the signal’s variability.

To execute the across_visits function successfully, you must provide inputs in the form of D_data and R_data. In this case, the desired number of states is specified as five (n_states = 5). The function employs univariate testing based on correlation by default, but can perform t-test or f-test by setting identify_categories=True or define the column of interest that should contain categorical values.

Additionally, we enable the export of the permutation distribution by setting test_statistic_option=True.


[57]:





import statistics_new_t_test as statistics
# Set the parameters for across_visits testing
method = "univariate"
Nperm = 10_000
n_states = 5
test_statistics_option=True
result_univariate  =statistics.test_across_visits(sig_data, vpath, method=method,Nperm=Nperm,test_statistics_option=test_statistics_option, n_states=n_states)













100%|██████████| 10000/10000 [03:45<00:00, 44.34it/s]






We can now examine the local result_univariate variable.


[18]:





result_univariate








[18]:







{'pval': array([6.99930007e-04, 9.03309669e-01, 5.99940006e-04, 9.69903010e-03,
        3.85961404e-02]),
 'base_statistics': array([ 0.63053061,  0.02544851, -0.62533888,  0.48084955, -0.39815568]),
 'test_statistics': array([[0.63053061, 0.02544851, 0.62533888, 0.48084955, 0.39815568],
        [0.03380033, 0.05773941, 0.06941308, 0.02714828, 0.01090663],
        [0.38445089, 0.05704431, 0.22060076, 0.00671112, 0.12239252],
        ...,
        [0.09720859, 0.01367561, 0.22339027, 0.05567054, 0.0553309 ],
        [0.28703715, 0.2659305 , 0.16937521, 0.29286014, 0.27198723],
        [0.13884685, 0.25248928, 0.19106938, 0.05346493, 0.0770967 ]]),
 'test_type': 'test_across_subjects',
 'method': 'univariate',
 'max_correction': False,
 'performed_tests': {'t_test_cols': [], 'f_test_cols': []},
 'Nperm': 10000}






Now that we have the permutation distribution [‘test_statistic] as we can see, it is because we set test_statistic_option=True


Visualization of results

Now that we have performed our test, we can then visualize the p-value array. We will import the function plot_heatmap, plot_scatter_with_labels and plot_histograms from module helperfunctions.py




[54]:





# Plot p-values
graphics.plot_p_value_matrix(result_univariate["pval"], title_text ="Heatmap of original p-values",figsize=(7, 2), xlabel="HMM States", ylabel="", alpha=0.05)
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Multiple Comparison

To be sure there is no type 1 error, we can apply the Benjamini/Hochberg to control the False Discovery Rate




[56]:





pval_corrected, rejected_corrected =statistics.pval_correction(result_univariate["pval"], method='fdr_bh')
# Plot p-values
graphics.plot_p_value_matrix(pval_corrected, title_text ="Heatmap of corrected p-values",figsize=(7, 2), xlabel="HMM States", ylabel="")
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Instead of using a heatmap, we can also visualize the results with a bar plot


[24]:





# Set the threshold of alpha to be 0.05
alpha = 0.05
variables = [f"State {i+1}" for i in range(len(pval_corrected))] # construct the variable names
graphics.plot_p_values_bar(pval_corrected,alpha = alpha, variables=variables)
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Plot permutation distribution

Presented here are the test statistics(result["test_statistic"]) of our permutation distributions for different states.

The red line shows the observed statistic, while the datapoints of the histogram represent the permutation distribution




[26]:





# Plot test statistics for pvals
significant_timestamp_position = np.where(pval_corrected < alpha)
for i in significant_timestamp_position[0]:
    graphics.plot_permutation_distribution(result["test_statistics"][:,i],title_text=f"Permutation distribution of State Nr.{i+1} ")
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Conclusion - Correlation

The p-value array reveals a significant result for states 1, 3 and 4 while the state 2 and 5 do not exhibit statistical significance. This outcome suggests that the discrete states (1, 3 and 4) of the Viterbi path (R) play a meaningful role in explaining variations in the signal (D). Considering the signal characteristics, where the highest peak corresponds to state 1, the lowest peak to state 3, and the second-highest to state 4 this alignment reinforces the significance observed.

It suggests that the distinct states, especially those with extreme signal values have a significant impact in shaping the variability of the signal.

Conversely, the lack of significance for states 2 and 5 implies that their influence may be more nuanced or less pronounced in explaining the observed variations in the signal.




Across visits - One vs rest


In the permutation test comparing one state against the rest (one vs rest), we analyze the mean signal difference between a specific state (e.g., state 1) and the combined influence of the other states. This approach assesses whether a particular state significantly differs from the collective impact of the remaining states in shaping signal values over time. In other words, the permutation test for mean difference allows us to discern if the observed variations in the signal (D) are
statistically significant for a specific state compared to the aggregate effect of the other states.

A significant result suggests that the distinctive characteristics of that particular state contribute significantly to the observed variations in the signal. Conversely, a non-significant result implies that the observed difference may be attributed to random chance, indicating that the specific state might not play a substantial role in accounting for the variability in the signal compared to the rest.



This test can help identify physiological states that significantly differ from the combined influence of other states. Consequently, it proves valuable in understanding the specific impact of a particular physiological state on a measured variable. Consider a study on heart rate variability across different states of arousal; this test has the potential to identify states that distinctly influence on heart rate or other hypotheses on the subject.


[31]:





# Set the parameters for across_visits testing
method = "one_vs_rest"
Nperm = 10_000
test_statistics_option=True
n_states = 5

result_one_vs_rest  =statistics.test_across_visits(sig_data, vpath, method=method,Nperm=Nperm,test_statistics_option=test_statistics_option, n_states=n_states)













100%|██████████| 10000/10000 [02:17<00:00, 72.81it/s]







Visualization of results

Now that we have performed our test, we can then visualize the p-value array. We will plot the p-values using the function plot_p_value_matrix




[42]:





# Set the threshold of alpha to be 0.05
alpha = 0.05
variables = [f"State {i+1}" for i in range(len(pval_corrected))] # construct the variable names
title_text = "One vs rest"
graphics.plot_p_values_bar(result_one_vs_rest["pval"],alpha = alpha, variables=variables, title_text=title_text,figsize=(7, 3))
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Multiple Comparison

Applying p-value correction using Bonferroni to take into account the risk of type 1 errors (false positive) due to multiple testing.




[41]:





pval_corrected, _ =statistics.pval_correction(result_one_vs_rest["pval"], method='bonferroni')
# Plot p-values
graphics.plot_p_values_bar(pval_corrected,alpha = alpha, variables=variables, title_text=title_text,figsize=(7, 3))
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Conclusion - One vs rest

What it shows here is that the significant different p-values (state 1 and 3) correspond to the states with the highest and lowest values in the signal (sig_data). In the context of the “one vs rest” comparison, where each state is compared against the rest combined, a significant p-value indicates that the mean signal difference for that specific state is statistically different from the combined impact of the other states. Therefore, the highest and lowest p-values suggest that these two
states significantly contribute to the observed variations in the signal, indicating their distinctive impact compared to the rest of the states.




9. Across visits - State pairs

In the permutation test comparing state pairs, we analyze the mean signal difference between different pairs of states (e.g., state 1 vs. state 2, state 1 vs. state 3, etc.). This procedure studies whether the mean signal difference between specific state pairs is statistically significant.

A significant result for a specific state pair implies that the mean signal difference between those states affects the observed variations in the signal. Conversely, a non-significant result suggests that the observed difference between those specific states might not play a substantial role in explaining the variability in the signal. This can be useful when examining how physiological signals change during transitions between different states. For example, in studies on pain response,
comparing mean differences between baseline and stress-induced states can provide insights into the physiological dynamics during transitions.


[44]:





# Set the parameters for across_visits testing
method = "state_pairs"
Nperm = 1000
test_statistics_otption=True
n_states = 5

result_state_pairs  =statistics.test_across_visits(sig_data, vpath, method=method,Nperm=Nperm,test_statistics_option=test_statistic_option, n_states=n_states)













Pairwise comparisons:   0%|          | 0/10 [00:00<?, ?it/s]












Pairwise comparisons: 100%|██████████| 10/10 [03:23<00:00, 20.38s/it]







Visualization of results

Now that we have performed our test, we can then visualize the p-value array. We will plot the p-values using the function plot_heatmap. Notably, in this instance, we designate the values on the diagonal as NaN (Not a Number) since these values are expected to be zeros and can be safely ignored in the visualization.




[46]:





# Plot p-values# Plot p-values
graphics.plot_p_value_matrix(result_state_pairs["pval"], title_text ="Heatmap of original p-values",figsize=(7, 3), xlabel="State 1", ylabel="State 2", alpha=0.05, none_diagonal=True)
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Interpret the p-value matrix

The matrix has a shape of (number of states by number of states), and the values below the diagonal (lower-left) represent comparisons where the lower state number is less than the higher state number. Values above the diagonal (upper-right) represent comparisons where the lower state number is greater than the higher state number.




Multiple Comparison

Now we can apply p-value correction using Bonferroni to control the risk of type 1 error (false positive).




[50]:





pval_corrected, rejected_corrected =statistics.pval_correction(result_state_pairs["pval"], method='fdr_bh')
# Plot p-values# Plot p-values
graphics.plot_p_value_matrix(pval_corrected, title_text ="Heatmap of original p-values",figsize=(7, 3), xlabel="State 1", ylabel="State 2", alpha=0.05, none_diagonal=True)
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[52]:





# Look at the val_sates values
val_state








[52]:







[4.912042797300882,
 -0.05858422375450776,
 -3.795696791047377,
 2.352225972831181,
 -2.5030418147224505]







Conclusion - state pairs

In the p-value matrix resulting from the permutation test for state pairs, where the majority of values are negative, exceptions include pairs 2 vs 1, 3 vs. 1, 3 vs 2, 4 vs. 3, 5 vs. 4, and 5 vs. 1. These exceptions signify statistically significant mean signal differences for the corresponding state pairs.


	State 1, with the highest value, exhibits a significant difference when compared with states 2, 3 and 5.


	State 3, holding the lowest value, signifies a significant difference when compared with states 1, 2 and 4.


	States 4 and 5, positioned between the extreme values, demonstrate a significant mean signal difference when paired with each other. Additionally, there is a significant difference between 5 and 1, the second lowest and highest numbers, respectively.




This suggests that these specific state pairs play a role in explaining the variability in the signal, and this could potentially provide valuable insights into how physiological signals change during transitions between different states, e.g. pain response studies.
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Account for Familiy structure using Permutation testing

This Python code is a conversion of a portion of the PALM (Permutation Analysis of Linear Models) package, initially created by Anderson M. Winkler. PALM serves as a robust tool for conducting permutation-based statistical analyses. If you wish to explore PALM further, please refer to the official PALM website [http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM] or read their guidelines on how the exchangeable blocks [https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/ExchangeabilityBlocks] are created
in MATLAB


In this Python adaptation, our primary focus lies in accommodating family structure within your dataset. We implement methods in PALM that manage exchangeability blocks, which is described in:

* Winkler AM, Webster MA, Vidaurre D, Nichols TE, Smith SM. Multi-level block permutation. Neuroimage. 2015;123:253-68. (Available as Open Access). DOI: 10.1016/j.neuroimage.2015.05.092



In this tutorial, we will walk through a practical example of processing family-related data using the Human Connectome Project dataset in Python.

Performing permutation tests with HCP data involves working with an EB.csv (Exchangeability Block) file, which is structured with multiple columns. These columns define blocks for each family, allowing for entire families to be shuffled collectively, and within these families, individual subjects can be permuted. Creating this file while considering the kinship relationships among hundreds of HCP subjects would be a time-consuming and error-prone task and can be construced using the function
hcp2block from palm_functions.py. To utilize it, follow these steps:


	Ensure that you have obtained the necessary permissions to access restricted HCP data. If you haven’t obtained permission yet, please follow the instructions provided on the HCP website [https://www.humanconnectome.org/].


	Once you have obtained permission, download the most up-to-date version of the restricted data file. This file is typically in CSV format and will be named something like RESTRICTED_yourname_MM_DD_YY_HH_MM_SS.csv after downloading.
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Import libraries

Let’s start by importing the required libraries and modules.


[ ]:





import numpy as np
import pandas as pd
from glhmm import palm_functions










1. Explore Data

Here we are going to look the data from the RESTRICTED_yourname_MM_DD_YY_HH_MM_SS.csv


[6]:





# Sample data - Replace this with your actual data
# famid, sibtype, famtype, age
# Load data
file_path = "RESTRICTED_yourname_MM_DD_YY_HH_MM_SS.csv"
twin_data = pd.read_csv(file_path)








[7]:





print("\nSummary statistics:")
print(twin_data.describe())














Summary statistics:
             Subject   Age_in_Yrs     Mother_ID     Father_ID  \
count    1206.000000  1206.000000   1206.000000   1206.000000
mean   374551.585406    28.837479  53110.315920  83166.267828
std    272686.898230     3.690534   3464.007126   3075.715552
min    100004.000000    22.000000  50263.000000  80216.000000
25%    154254.250000    26.000000  51603.000000  81476.000000
50%    212166.500000    29.000000  52312.000000  82201.000000
75%    586310.500000    32.000000  53302.250000  84431.000000
max    996782.000000    37.000000  99998.000000  99999.000000

       TestRetestInterval   Handedness  SSAGA_Employ  SSAGA_Income  \
count           46.000000  1206.000000   1204.000000   1199.000000
mean           139.304348    65.621891      1.521595      5.003336
std             68.994000    44.994546      0.749862      2.172830
min             18.000000  -100.000000      0.000000      1.000000
25%             95.000000    60.000000      1.000000      3.000000
50%            133.500000    80.000000      2.000000      5.000000
75%            157.000000    95.000000      2.000000      7.000000
max            343.000000   100.000000      2.000000      8.000000

        SSAGA_Educ  SSAGA_InSchool  ...  SSAGA_Times_Used_Illicits  \
count  1204.000000     1204.000000  ...                1204.000000
mean     14.863787        0.197674  ...                   0.530731
std       1.819279        0.398411  ...                   1.166826
min      11.000000        0.000000  ...                   0.000000
25%      13.750000        0.000000  ...                   0.000000
50%      16.000000        0.000000  ...                   0.000000
75%      16.000000        0.000000  ...                   0.000000
max      17.000000        1.000000  ...                   5.000000

       SSAGA_Times_Used_Cocaine  SSAGA_Times_Used_Hallucinogens  \
count               1204.000000                     1204.000000
mean                   0.214286                        0.268272
std                    0.939887                        0.900885
min                    0.000000                        0.000000
25%                    0.000000                        0.000000
50%                    0.000000                        0.000000
75%                    0.000000                        0.000000
max                    5.000000                        5.000000

       SSAGA_Times_Used_Opiates  SSAGA_Times_Used_Sedatives  \
count               1204.000000                 1204.000000
mean                   0.230897                    0.176910
std                    0.953539                    0.833284
min                    0.000000                    0.000000
25%                    0.000000                    0.000000
50%                    0.000000                    0.000000
75%                    0.000000                    0.000000
max                    5.000000                    5.000000

       SSAGA_Times_Used_Stimulants  SSAGA_Mj_Use  SSAGA_Mj_Ab_Dep  \
count                  1204.000000   1204.000000      1204.000000
mean                      0.220100      0.543189         0.090532
std                       0.896411      0.498338         0.287061
min                       0.000000      0.000000         0.000000
25%                       0.000000      0.000000         0.000000
50%                       0.000000      1.000000         0.000000
75%                       0.000000      1.000000         0.000000
max                       5.000000      1.000000         1.000000

       SSAGA_Mj_Age_1st_Use  SSAGA_Mj_Times_Used
count            654.000000          1204.000000
mean               2.577982             1.406146
std                0.937171             1.691599
min                1.000000             0.000000
25%                2.000000             0.000000
50%                3.000000             1.000000
75%                3.000000             3.000000
max                4.000000             5.000000

[8 rows x 184 columns]








2. Create Exchangeability blocks

Now after looking at the RESTRICTED_yourname_MM_DD_YY_HH_MM_SS.csv we can create the exchangeability blocks (EB) by using the hcp2block function. Having EB makes it possible to create the Permutation Tree (Ptree)


[5]:





import os
# Filter twin_data
folder_name = "data"
data_ID_file = 'data_ID.npy'

# Load behavioral data
file_path = os.path.join(folder_name, data_ID_file)
data_ID = np.load(file_path)

# Filter the twin data
twin_data_filtered = twin_data[twin_data['Subject'].isin(data_ID)]
twin_data_filtered.shape








[5]:







(1003, 201)







[5]:





# Example usage
blocksfile = "EB.csv"
tab, EB, famtype = hcp2block(twin_data_filtered, blocksfile, dz2sib=False)













c:\Users\au323479\Desktop\permtest\PALM-master_python\palm_functions.py:48: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  tmp['Zygosity'] = np.where(tmp['ZygosityGT'].isna() | (tmp['ZygosityGT'] == ' ') | tmp['ZygosityGT'].isnull(),












These subjects have data missing and will be removed: [168240, 376247]







Data Transformation Results

Display the results of using the function on the HCP twin data.




[6]:





# Display transformed data and results
print("Original tab shape:", twin_data.shape)
print("Transformed tab shape:", tab.shape)
print("Block structure shape:", EB.shape)
print("Family type array shape:", famtype.shape)













Original tab shape: (1206, 201)
Transformed tab shape: (1001, 6)
Block structure shape: (1001, 5)
Family type array shape: (1001,)






The steps above will generate a file named EB.csv. This file contains definitions for blocks corresponding to subjects with complete family information in the restricted file.

Complete family information means subjects with both father and mother IDs, along with zygosity information. The order of these definitions in EB.csv mirrors the order of subjects in the restricted file.


We’ll use the data from EB to create a Permutation Tree (Ptree) that we can later use for permutation testing.

When we examine the EB data, we can interpret its different columns as follows: * 1st col: The negative values in this column indicate that the sub-indices in the next column must remain unchanged during shuffling. * 2nd col: familie type, which is a calculated score assigned to each family. For example, a family consisting of a mother, father, 1 full sibling (FS), and 2 monozygotic twins (MZ) would have same score as other families with the same family combination. * 3rd col: family
ID, providing a distinct identifier for each family. * 4th col: sibling type, which represents the score assigned to each subject. * 5th col: subject ID, which are unique identifiers for each subject in the dataset.



Regarding permutations, dizygotic twins (DZ) can be handled differently from non-twins (NT). By default, DZ twins cannot be shuffled with non-twin subjects, even within the same family. However, since DZ pairs share the same kinship as NT siblings, you might want to allow them to be swapped during permutations. You can provide a third argument as ‘true’ to hcp2blocks to indicate this.


[7]:





pd.DataFrame(EB).head()








[7]:
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